438 research outputs found

    The complexity of linear-time temporal logic over the class of ordinals

    Full text link
    We consider the temporal logic with since and until modalities. This temporal logic is expressively equivalent over the class of ordinals to first-order logic by Kamp's theorem. We show that it has a PSPACE-complete satisfiability problem over the class of ordinals. Among the consequences of our proof, we show that given the code of some countable ordinal alpha and a formula, we can decide in PSPACE whether the formula has a model over alpha. In order to show these results, we introduce a class of simple ordinal automata, as expressive as B\"uchi ordinal automata. The PSPACE upper bound for the satisfiability problem of the temporal logic is obtained through a reduction to the nonemptiness problem for the simple ordinal automata.Comment: Accepted for publication in LMC

    The isomorphism problem for tree-automatic ordinals with addition

    Get PDF
    This paper studies tree-automatic ordinals (or equivalently, well-founded linearly ordered sets) together with the ordinal addition operation +. Informally, these are ordinals such that their elements are coded by finite trees for which the linear order relation of the ordinal and the ordinal addition operation can be determined by tree automata. We describe an algorithm that, given two tree-automatic ordinals with the ordinal addition operation, decides if the ordinals are isomorphic

    Tree-Automatic Well-Founded Trees

    Get PDF
    We investigate tree-automatic well-founded trees. Using Delhomme's decomposition technique for tree-automatic structures, we show that the (ordinal) rank of a tree-automatic well-founded tree is strictly below omega^omega. Moreover, we make a step towards proving that the ranks of tree-automatic well-founded partial orders are bounded by omega^omega^omega: we prove this bound for what we call upwards linear partial orders. As an application of our result, we show that the isomorphism problem for tree-automatic well-founded trees is complete for level Delta^0_{omega^omega} of the hyperarithmetical hierarchy with respect to Turing-reductions.Comment: Will appear in Logical Methods of Computer Scienc

    Model Theoretic Complexity of Automatic Structures

    Get PDF
    We study the complexity of automatic structures via well-established concepts from both logic and model theory, including ordinal heights (of well-founded relations), Scott ranks of structures, and Cantor-Bendixson ranks (of trees). We prove the following results: 1) The ordinal height of any automatic well- founded partial order is bounded by \omega^\omega ; 2) The ordinal heights of automatic well-founded relations are unbounded below the first non-computable ordinal; 3) For any computable ordinal there is an automatic structure of Scott rank at least that ordinal. Moreover, there are automatic structures of Scott rank the first non-computable ordinal and its successor; 4) For any computable ordinal, there is an automatic successor tree of Cantor-Bendixson rank that ordinal.Comment: 23 pages. Extended abstract appeared in Proceedings of TAMC '08, LNCS 4978 pp 514-52

    Covering of ordinals

    Get PDF
    The paper focuses on the structure of fundamental sequences of ordinals smaller than ϵ0\epsilon_0. A first result is the construction of a monadic second-order formula identifying a given structure, whereas such a formula cannot exist for ordinals themselves. The structures are precisely classified in the pushdown hierarchy. Ordinals are also located in the hierarchy, and a direct presentation is given.Comment: Accepted at FSTTCS'0

    The FC-rank of a context-free language

    Full text link
    We prove that the finite condensation rank (FC-rank) of the lexicographic ordering of a context-free language is strictly less than ωω\omega^\omega

    Complexity Hierarchies Beyond Elementary

    Full text link
    We introduce a hierarchy of fast-growing complexity classes and show its suitability for completeness statements of many non elementary problems. This hierarchy allows the classification of many decision problems with a non-elementary complexity, which occur naturally in logic, combinatorics, formal languages, verification, etc., with complexities ranging from simple towers of exponentials to Ackermannian and beyond.Comment: Version 3 is the published version in TOCT 8(1:3), 2016. I will keep updating the catalogue of problems from Section 6 in future revision

    The Rank of Tree-Automatic Linear Orderings

    Get PDF
    We generalise Delhomm\'e's result that each tree-automatic ordinal is strictly below \omega^\omega^\omega{} by showing that any tree-automatic linear ordering has FC-rank strictly below \omega^\omega. We further investigate a restricted form of tree-automaticity and prove that every linear ordering which admits a tree-automatic presentation of branching complexity at most k has FC-rank strictly below \omega^k.Comment: 20 pages, 3 figure
    corecore