2,941 research outputs found

    Structural Design using Cellular Automata

    Get PDF
    Traditional parallel methods for structural design do not scale well. This paper discusses the application of massively scalable cellular automata (CA) techniques to structural design. There are two sets of CA rules, one used to propagate stresses and strains, and one to perform design analysis. These rules can be applied serially,periodically,or concurrently, and Jacobi or Gauss- Seidel style updating can be done. These options are compared with respect to convergence,speed, and stability

    On insertion-deletion systems over relational words

    Full text link
    We introduce a new notion of a relational word as a finite totally ordered set of positions endowed with three binary relations that describe which positions are labeled by equal data, by unequal data and those having an undefined relation between their labels. We define the operations of insertion and deletion on relational words generalizing corresponding operations on strings. We prove that the transitive and reflexive closure of these operations has a decidable membership problem for the case of short insertion-deletion rules (of size two/three and three/two). At the same time, we show that in the general case such systems can produce a coding of any recursively enumerable language leading to undecidabilty of reachability questions.Comment: 24 pages, 8 figure

    Lattice Gauge Tensor Networks

    Get PDF
    We present a unified framework to describe lattice gauge theories by means of tensor networks: this framework is efficient as it exploits the high amount of local symmetry content native of these systems describing only the gauge invariant subspace. Compared to a standard tensor network description, the gauge invariant one allows to speed-up real and imaginary time evolution of a factor that is up to the square of the dimension of the link variable. The gauge invariant tensor network description is based on the quantum link formulation, a compact and intuitive formulation for gauge theories on the lattice, and it is alternative to and can be combined with the global symmetric tensor network description. We present some paradigmatic examples that show how this architecture might be used to describe the physics of condensed matter and high-energy physics systems. Finally, we present a cellular automata analysis which estimates the gauge invariant Hilbert space dimension as a function of the number of lattice sites and that might guide the search for effective simplified models of complex theories.Comment: 28 pages, 9 figure

    A note on syndeticity, recognizable sets and Cobham's theorem

    Full text link
    In this note, we give an alternative proof of the following result. Let p, q >= 2 be two multiplicatively independent integers. If an infinite set of integers is both p- and q-recognizable, then it is syndetic. Notice that this result is needed in the classical proof of the celebrated Cobham?s theorem. Therefore the aim of this paper is to complete [13] and [1] to obtain an accessible proof of Cobham?s theorem

    Combinatorial models of expanding dynamical systems

    Full text link
    We define iterated monodromy groups of more general structures than partial self-covering. This generalization makes it possible to define a natural notion of a combinatorial model of an expanding dynamical system. We prove that a naturally defined "Julia set" of the generalized dynamical systems depends only on the associated iterated monodromy group. We show then that the Julia set of every expanding dynamical system is an inverse limit of simplicial complexes constructed by inductive cut-and-paste rules.Comment: The new version differs substantially from the first one. Many parts are moved to other (mostly future) papers, the main open question of the first version is solve

    Complex Networks from Simple Rewrite Systems

    Full text link
    Complex networks are all around us, and they can be generated by simple mechanisms. Understanding what kinds of networks can be produced by following simple rules is therefore of great importance. We investigate this issue by studying the dynamics of extremely simple systems where are `writer' moves around a network, and modifies it in a way that depends upon the writer's surroundings. Each vertex in the network has three edges incident upon it, which are colored red, blue and green. This edge coloring is done to provide a way for the writer to orient its movement. We explore the dynamics of a space of 3888 of these `colored trinet automata' systems. We find a large variety of behaviour, ranging from the very simple to the very complex. We also discover simple rules that generate forms which are remarkably similar to a wide range of natural objects. We study our systems using simulations (with appropriate visualization techniques) and analyze selected rules mathematically. We arrive at an empirical classification scheme which reveals a lot about the kinds of dynamics and networks that can be generated by these systems
    • …
    corecore