10,064 research outputs found

    Automata and temporal logic over arbitrary linear time

    Get PDF
    Linear temporal logic was introduced in order to reason about reactive systems. It is often considered with respect to infinite words, to specify the behaviour of long-running systems. One can consider more general models for linear time, using words indexed by arbitrary linear orderings. We investigate the connections between temporal logic and automata on linear orderings, as introduced by Bruy\`ere and Carton. We provide a doubly exponential procedure to compute from any LTL formula with Until, Since, and the Stavi connectives an automaton that decides whether that formula holds on the input word. In particular, since the emptiness problem for these automata is decidable, this transformation gives a decision procedure for the satisfiability of the logic

    Efficient First-Order Temporal Logic for Infinite-State Systems

    Get PDF
    In this paper we consider the specification and verification of infinite-state systems using temporal logic. In particular, we describe parameterised systems using a new variety of first-order temporal logic that is both powerful enough for this form of specification and tractable enough for practical deductive verification. Importantly, the power of the temporal language allows us to describe (and verify) asynchronous systems, communication delays and more complex properties such as liveness and fairness properties. These aspects appear difficult for many other approaches to infinite-state verification.Comment: 16 pages, 2 figure

    Exploiting the Temporal Logic Hierarchy and the Non-Confluence Property for Efficient LTL Synthesis

    Full text link
    The classic approaches to synthesize a reactive system from a linear temporal logic (LTL) specification first translate the given LTL formula to an equivalent omega-automaton and then compute a winning strategy for the corresponding omega-regular game. To this end, the obtained omega-automata have to be (pseudo)-determinized where typically a variant of Safra's determinization procedure is used. In this paper, we show that this determinization step can be significantly improved for tool implementations by replacing Safra's determinization by simpler determinization procedures. In particular, we exploit (1) the temporal logic hierarchy that corresponds to the well-known automata hierarchy consisting of safety, liveness, Buechi, and co-Buechi automata as well as their boolean closures, (2) the non-confluence property of omega-automata that result from certain translations of LTL formulas, and (3) symbolic implementations of determinization procedures for the Rabin-Scott and the Miyano-Hayashi breakpoint construction. In particular, we present convincing experimental results that demonstrate the practical applicability of our new synthesis procedure

    Parametric Linear Dynamic Logic

    Get PDF
    We introduce Parametric Linear Dynamic Logic (PLDL), which extends Linear Dynamic Logic (LDL) by temporal operators equipped with parameters that bound their scope. LDL was proposed as an extension of Linear Temporal Logic (LTL) that is able to express all Ļ‰\omega-regular specifications while still maintaining many of LTL's desirable properties like an intuitive syntax and a translation into non-deterministic B\"uchi automata of exponential size. But LDL lacks capabilities to express timing constraints. By adding parameterized operators to LDL, we obtain a logic that is able to express all Ļ‰\omega-regular properties and that subsumes parameterized extensions of LTL like Parametric LTL and PROMPT-LTL. Our main technical contribution is a translation of PLDL formulas into non-deterministic B\"uchi word automata of exponential size via alternating automata. This yields a PSPACE model checking algorithm and a realizability algorithm with doubly-exponential running time. Furthermore, we give tight upper and lower bounds on optimal parameter values for both problems. These results show that PLDL model checking and realizability are not harder than LTL model checking and realizability.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed

    Reasoning about XML with temporal logics and automata

    Get PDF
    We show that problems arising in static analysis of XML specifications and transformations can be dealt with using techniques similar to those developed for static analysis of programs. Many properties of interest in the XML context are related to navigation, and can be formulated in temporal logics for trees. We choose a logic that admits a simple single-exponential translation into unranked tree automata, in the spirit of the classical LTL-to-BĆ¼chi automata translation. Automata arising from this translation have a number of additional properties; in particular, they are convenient for reasoning about unary node-selecting queries, which are important in the XML context. We give two applications of such reasoning: one deals with a classical XML problem of reasoning about navigation in the presence of schemas, and the other relates to verifying security properties of XML views

    One Theorem to Rule Them All: A Unified Translation of LTL into {\omega}-Automata

    Full text link
    We present a unified translation of LTL formulas into deterministic Rabin automata, limit-deterministic B\"uchi automata, and nondeterministic B\"uchi automata. The translations yield automata of asymptotically optimal size (double or single exponential, respectively). All three translations are derived from one single Master Theorem of purely logical nature. The Master Theorem decomposes the language of a formula into a positive boolean combination of languages that can be translated into {\omega}-automata by elementary means. In particular, Safra's, ranking, and breakpoint constructions used in other translations are not needed
    • ā€¦
    corecore