1,592 research outputs found

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    Unboundedness Problems for Machines with Reversal-Bounded Counters

    Get PDF
    We consider a general class of decision problems concerning formal languages, called (one-dimensional) unboundedness predicates, for automata that feature reversal-bounded counters (RBCA). We show that each problem in this class reduces-non-deterministically in polynomial time to the same problem for just nite automata. We also show an analogous reduction for automata that have access to both a push- down stack and reversal-bounded counters (PRBCA). This allows us to answer several open questions: For example, we settle the complexity of deciding whether a given (P)RBCA language L is bounded, meaning whether there exist words w1, . . . , wn with L ⊆ w1∗ · · · wn∗ . For PRBCA, even decidability was open. Our methods also show that there is no language of a (P)RBCA of intermediate growth. Part of our proof is likely of independent interest: We show that one can translate an RBCA into a machine with Z-counters in logarithmic space

    Introduction to the Literature on Semantics

    Get PDF
    An introduction to the literature on semantics. Included are pointers to the literature on axiomatic semantics, denotational semantics, operational semantics, and type theory

    Computing the Width of Non-deterministic Automata

    Get PDF
    International audienceWe introduce a measure called width, quantifying the amount of nondetermin-ism in automata. Width generalises the notion of good-for-games (GFG) automata, that correspond to NFAs of width 1, and where an accepting run can be built on-the-fly on any accepted input. We describe an incremental determinisation construction on NFAs, which can be more efficient than the full powerset determinisation, depending on the width of the input NFA. This construction can be generalised to infinite words, and is particularly well-suited to coBüchi automata. For coBüchi automata, this procedure can be used to compute either a deterministic automaton or a GFG one, and it is algorithmically more efficient in the last case. We show this fact by proving that checking whether a coBüchi automaton is determinisable by pruning is NP-complete. On finite or infinite words, we show that computing the width of an automaton is EXPTIME-complete. This implies EXPTIME-completeness for multipebble simulation games on NFAs
    corecore