56 research outputs found

    Assessing the Impact of Blood Pressure on Cardiac Function Using Interpretable Biomarkers and Variational Autoencoders

    Get PDF
    Maintaining good cardiac function for as long as possible is a major concern for healthcare systems worldwide and there is much interest in learning more about the impact of different risk factors on cardiac health. The aim of this study is to analyze the impact of systolic blood pressure (SBP) on cardiac function while preserving the interpretability of the model using known clinical biomarkers in a large cohort of the UK Biobank population. We propose a novel framework that combines deep learning based estimation of interpretable clinical biomarkers from cardiac cine MR data with a variational autoencoder (VAE). The VAE architecture integrates a regression loss in the latent space, which enables the progression of cardiac health with SBP to be learnt. Results on 3,600 subjects from the UK Biobank show that the proposed model allows us to gain important insight into the deterioration of cardiac function with increasing SBP, identify key interpretable factors involved in this process, and lastly exploit the model to understand patterns of positive and adverse adaptation of cardiac function

    Sustainable marine ecosystems: deep learning for water quality assessment and forecasting

    Get PDF
    An appropriate management of the available resources within oceans and coastal regions is vital to guarantee their sustainable development and preservation, where water quality is a key element. Leveraging on a combination of cross-disciplinary technologies including Remote Sensing (RS), Internet of Things (IoT), Big Data, cloud computing, and Artificial Intelligence (AI) is essential to attain this aim. In this paper, we review methodologies and technologies for water quality assessment that contribute to a sustainable management of marine environments. Specifically, we focus on Deep Leaning (DL) strategies for water quality estimation and forecasting. The analyzed literature is classified depending on the type of task, scenario and architecture. Moreover, several applications including coastal management and aquaculture are surveyed. Finally, we discuss open issues still to be addressed and potential research lines where transfer learning, knowledge fusion, reinforcement learning, edge computing and decision-making policies are expected to be the main involved agents.Postprint (published version

    Urban air pollution modelling with machine learning using fixed and mobile sensors

    Get PDF
    Detailed air quality (AQ) information is crucial for sustainable urban management, and many regions in the world have built static AQ monitoring networks to provide AQ information. However, they can only monitor the region-level AQ conditions or sparse point-based air pollutant measurements, but cannot capture the urban dynamics with high-resolution spatio-temporal variations over the region. Without pollution details, citizens will not be able to make fully informed decisions when choosing their everyday outdoor routes or activities, and policy-makers can only make macroscopic regulating decisions on controlling pollution triggering factors and emission sources. An increasing research effort has been paid on mobile and ubiquitous sampling campaigns as they are deemed the more economically and operationally feasible methods to collect urban AQ data with high spatio-temporal resolution. The current research proposes a Machine Learning based AQ Inference (Deep AQ) framework from data-driven perspective, consisting of data pre-processing, feature extraction and transformation, and pixelwise (grid-level) AQ inference. The Deep AQ framework is adaptable to integrate AQ measurements from the fixed monitoring sites (temporally dense but spatially sparse), and mobile low-cost sensors (temporally sparse but spatially dense). While instantaneous pollutant concentration varies in the micro-environment, this research samples representative values in each grid-cell-unit and achieves AQ inference at 1 km \times 1 km pixelwise scale. This research explores the predictive power of the Deep AQ framework based on samples from only 40 fixed monitoring sites in Chengdu, China (4,900 {\mathrm{km}}^\mathrm{2}, 26 April - 12 June 2019) and collaborative sampling from 28 fixed monitoring sites and 15 low-cost sensors equipped with taxis deployed in Beijing, China (3,025 {\mathrm{km}}^\mathrm{2}, 19 June - 16 July 2018). The proposed Deep AQ framework is capable of producing high-resolution (1 km \times 1 km, hourly) pixelwise AQ inference based on multi-source AQ samples (fixed or mobile) and urban features (land use, population, traffic, and meteorological information, etc.). This research has achieved high-resolution (1 km \times 1 km, hourly) AQ inference (Chengdu: less than 1% spatio-temporal coverage; Beijing: less than 5% spatio-temporal coverage) with reasonable and satisfactory accuracy by the proposed methods in urban cases (Chengdu: SMAPE \mathrm{<} 20%; Beijing: SMAPE \mathrm{<} 15%). Detailed outcomes and main conclusions are provided in this thesis on the aspects of fixed and mobile sensing, spatio-temporal coverage and density, and the relative importance of urban features. Outcomes from this research facilitate to provide a scientific and detailed health impact assessment framework for exposure analysis and inform policy-makers with data driven evidence for sustainable urban management.Open Acces

    Deep learning for the early detection of harmful algal blooms and improving water quality monitoring

    Get PDF
    Climate change will affect how water sources are managed and monitored. The frequency of algal blooms will increase with climate change as it presents favourable conditions for the reproduction of phytoplankton. During monitoring, possible sensory failures in monitoring systems result in partially filled data which may affect critical systems. Therefore, imputation becomes necessary to decrease error and increase data quality. This work investigates two issues in water quality data analysis: improving data quality and anomaly detection. It consists of three main topics: data imputation, early algal bloom detection using in-situ data and early algal bloom detection using multiple modalities.The data imputation problem is addressed by experimenting with various methods with a water quality dataset that includes four locations around the North Sea and the Irish Sea with different characteristics and high miss rates, testing model generalisability. A novel neural network architecture with self-attention is proposed in which imputation is done in a single pass, reducing execution time. The self-attention components increase the interpretability of the imputation process at each stage of the network, providing knowledge to domain experts.After data curation, algal activity is predicted using transformer networks, between 1 to 7 days ahead, and the importance of the input with regard to the output of the prediction model is explained using SHAP, aiming to explain model behaviour to domain experts which is overlooked in previous approaches. The prediction model improves bloom detection performance by 5% on average and the explanation summarizes the complex structure of the model to input-output relationships. Performance improvements on the initial unimodal bloom detection model are made by incorporating multiple modalities into the detection process which were only used for validation purposes previously. The problem of missing data is also tackled by using coordinated representations, replacing low quality in-situ data with satellite data and vice versa, instead of imputation which may result in biased results

    Developing a deep learning model for the simulation of micro-pollutants in a watershed

    Get PDF
    In recent years, as agricultural activities and types of crops have become diverse, the occurrence of micro-pollutants has been reported more frequently in rural areas. These pollutants have detrimental effects on human health and ecological systems; thus, it is important to manage and monitor their presence in the environment. The modeling approach could be an effective way to understand and manage these pollutants. This study predicts the concentrations of micro-pollutants (MPs) using deep learning (DL) models, and the results are then compared with simulation results obtained from the soil water assessment tool (SWAT) model. The SWAT model showed an unacceptable performance owing to the resulting negative NasheSutcliffe efficiency (NSE) values for the simulations. This may be caused by the limitations of SWAT, which pertains to adopting simplified equations to simulate micro-pollutants. In addition, the ambiguous plan of pesticide application increased the model uncertainty, thereby deteriorating the model result. Here, we developed two different DL models: long short-term memory (LSTM) and convolutional neural network (CNN). LSTM exhibited the highest model performance, with NSE values of 0.99 and 0.75 for the training and validation steps, respectively. In the multi-target MP model, the error decreased as the number of simulated pollutants increased. The simulation of the four pollutants had the highest error, while the six-target simulation had the lowest error. In conclusion, this study demonstrated that the LSTM model has the potential to improve the prediction of MPs in aquatic systems. (c) 2021 Elsevier Ltd. All rights reserved

    Radiation Sensing: Design and Deployment of Sensors and Detectors

    Get PDF
    Radiation detection is important in many fields, and it poses significant challenges for instrument designers. Radiation detection instruments, particularly for nuclear decommissioning and security applications, are required to operate in unknown environments and should detect and characterise radiation fields in real time. This book covers both theory and practice, and it solicits recent advances in radiation detection, with a particular focus on radiation detection instrument design, real-time data processing, radiation simulation and experimental work, robot design, control systems, task planning and radiation shielding

    AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives

    Get PDF
    In theory, building automation and management systems (BAMSs) can provide all the components and functionalities required for analyzing and operating buildings. However, in reality, these systems can only ensure the control of heating ventilation and air conditioning system systems. Therefore, many other tasks are left to the operator, e.g. evaluating buildings’ performance, detecting abnormal energy consumption, identifying the changes needed to improve efficiency, ensuring the security and privacy of end-users, etc. To that end, there has been a movement for developing artificial intelligence (AI) big data analytic tools as they offer various new and tailor-made solutions that are incredibly appropriate for practical buildings’ management. Typically, they can help the operator in (i) analyzing the tons of connected equipment data; and; (ii) making intelligent, efficient, and on-time decisions to improve the buildings’ performance. This paper presents a comprehensive systematic survey on using AI-big data analytics in BAMSs. It covers various AI-based tasks, e.g. load forecasting, water management, indoor environmental quality monitoring, occupancy detection, etc. The first part of this paper adopts a well-designed taxonomy to overview existing frameworks. A comprehensive review is conducted about different aspects, including the learning process, building environment, computing platforms, and application scenario. Moving on, a critical discussion is performed to identify current challenges. The second part aims at providing the reader with insights into the real-world application of AI-big data analytics. Thus, three case studies that demonstrate the use of AI-big data analytics in BAMSs are presented, focusing on energy anomaly detection in residential and office buildings and energy and performance optimization in sports facilities. Lastly, future directions and valuable recommendations are identified to improve the performance and reliability of BAMSs in intelligent buildings

    The application of deep learning for remote sensing of soil organic carbon stocks distribution in South Africa.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Pietermaritzburg.Soil organic carbon (SOC) is a vital measure for ecosystem health and offers opportunities to understand carbon fluxes and associated implications. However, unprecedented anthropogenic disturbances have significantly altered SOC distribution across the globe, leading to considerable carbon losses. In addition, reliable SOC estimates, particularly over large spatial extents remain a major challenge due to among others limited sample points, quality of simulation data and suitable algorithms. Remote sensing (RS) approaches have emerged as a suitable alternative to field and laboratory SOC determination, especially at large spatial extent. Nevertheless, reliable determination of SOC distribution using RS data requires robust analytical approaches. Compared to linear and classical machine learning (ML) models, deep learning (DL) models offer a considerable improvement in data analysis due to their ability to extract more representative features and identify complex spatial patterns associated with big data. Hence, advancements in remote sensing, proliferation of big data, and deep learning architecture offer great potential for large-scale SOC mapping. However, there is paucity in literature on the application of DL-based remote sensing approaches for SOC prediction. To this end, this study is aimed at exploring DL-based approaches for the remote sensing of SOC stocks distribution across South Africa. The first objective sought to provide a synopsis of the use of traditional neural network (TNN) and DL-based remote sensing of SOC with emphasis on basic concepts, differences, similarities and limitations, while the second objective provided an in-depth review of the history, utility, challenges, and prospects of DL-based remote sensing approaches for mapping SOC. A quantitative evaluation between the use of TNN and DL frameworks was also conducted. Findings show that majority of published literature were conducted in the Northern Hemisphere while Africa have only four publications. Results also reveal that most studies adopted hyperspectral data, particularly spectrometers as compared to multispectral data. In comparison to DL (10%), TNN (90%) models were more commonly utilized in the literature; yet, DL models produced higher median accuracy (93%) than TNN (85%) models. The review concludes by highlighting future opportunities for retrieving SOC from remotely sensed data using DL frameworks. The third objective compared the accuracy of DL—deep neural network (DNN) model and a TNN—artificial neural network (ANN), as well as other popular classical ML models that include random forest (RF) and support vector machine (SVM), for national scale SOC mapping using Sentinel-3 data. With a root mean square error (RMSE) of 10.35 t/ha, the DNN model produced the best results, followed by RF (11.2 t/ha), ANN (11.6 t/ha), and SVM (13.6 t/ha). The DNN's analytical abilities, combined with its capacity to handle large amounts of data is a key advantage over other classical ML models. Having established the superiority of DL models over TNN and other classical models, the fourth objective focused on investigating SOC stocks distribution across South Africa’s major land uses, using Deep Neural Networks (DNN) and Sentinel-3 satellite data. Findings show that grasslands contributed the most to overall SOC stocks (31.36 %), while urban vegetation contributed the least (0.04%). Results also show that commercial (46.06 t/h) and natural (44.34 t/h) forests had better carbon sequestration capacity than other classes. These findings provide an important guideline for managing SOC stocks in South Africa, useful in climate change mitigation by promoting sustainable land-use practices. The fifth objective sought to determine the distribution of SOC within South Africa’s major biomes using remotely sensed-topo-climatic data and Concrete Autoencoder-Deep Neural Networks (CAE-DNN). Findings show that the CAE-DNN model (built from 26 selected variables) had the best accuracy of the DNNs examined, with an RMSE of 7.91 t/h. Soil organic carbon stock was also shown to be related to biome coverage, with the grassland (32.38%) and savanna (31.28%) biomes contributing the most to the overall SOC pool in South Africa. forests (44.12 t/h) and the Indian ocean coastal belt (43.05 t/h) biomes, despite having smaller footprints, have the highest SOC sequestration capacity. To increase SOC storage, it is recommended that degraded biomes be restored; however, a balance must be maintained between carbon sequestration capability, biodiversity health, and adequate provision of ecosystem services. The sixth objective sought to project the present SOC stocks in South Africa into the future (i.e. 2050). Soil organic carbon variations generated by projected climate change and land cover were mapped and analysed using a digital soil mapping (DSM) technique combined with space-for-time substitution (SFTS) procedures over South Africa through 2050. The potential SOC stocks variations across South Africa's major land uses were also assessed from current (2021) to future (2050). The first part of the study uses a Deep Neural Network (DNN) to estimate current SOC content (2021), while the second phase uses an average of five WorldClim General Circulation Models to project SOC to the future (2050) under four Shared Socio-economic Pathways (SSPs). Results show a general decline in projected future SOC stocks by 2050, ranging from 4.97 to 5.38 Pg, compared to estimated current stocks of 5.64 Pg. The findings are critical for government and policymakers in assessing the efficacy of current management systems in South Africa. Overall, this study provides a cost-effective framework for national scale mapping of SOC stocks, which is the largest terrestrial carbon pool using advanced DL-based remote sensing approach. These findings are valuable for designing appropriate management strategies to promote carbon uptake, soil quality, and measuring terrestrial ecosystem responses and feedbacks to climate change. This study is also the first DL-based remote sensing of SOC stocks distribution in South Africa
    corecore