1,702 research outputs found

    Quantum autoencoders via quantum adders with genetic algorithms

    Full text link
    The quantum autoencoder is a recent paradigm in the field of quantum machine learning, which may enable an enhanced use of resources in quantum technologies. To this end, quantum neural networks with less nodes in the inner than in the outer layers were considered. Here, we propose a useful connection between approximate quantum adders and quantum autoencoders. Specifically, this link allows us to employ optimized approximate quantum adders, obtained with genetic algorithms, for the implementation of quantum autoencoders for a variety of initial states. Furthermore, we can also directly optimize the quantum autoencoders via genetic algorithms. Our approach opens a different path for the design of quantum autoencoders in controllable quantum platforms

    Continuous-variable quantum neural networks

    Full text link
    We introduce a general method for building neural networks on quantum computers. The quantum neural network is a variational quantum circuit built in the continuous-variable (CV) architecture, which encodes quantum information in continuous degrees of freedom such as the amplitudes of the electromagnetic field. This circuit contains a layered structure of continuously parameterized gates which is universal for CV quantum computation. Affine transformations and nonlinear activation functions, two key elements in neural networks, are enacted in the quantum network using Gaussian and non-Gaussian gates, respectively. The non-Gaussian gates provide both the nonlinearity and the universality of the model. Due to the structure of the CV model, the CV quantum neural network can encode highly nonlinear transformations while remaining completely unitary. We show how a classical network can be embedded into the quantum formalism and propose quantum versions of various specialized model such as convolutional, recurrent, and residual networks. Finally, we present numerous modeling experiments built with the Strawberry Fields software library. These experiments, including a classifier for fraud detection, a network which generates Tetris images, and a hybrid classical-quantum autoencoder, demonstrate the capability and adaptability of CV quantum neural networks

    Hybrid Collaborative Filtering with Autoencoders

    Get PDF
    Collaborative Filtering aims at exploiting the feedback of users to provide personalised recommendations. Such algorithms look for latent variables in a large sparse matrix of ratings. They can be enhanced by adding side information to tackle the well-known cold start problem. While Neu-ral Networks have tremendous success in image and speech recognition, they have received less attention in Collaborative Filtering. This is all the more surprising that Neural Networks are able to discover latent variables in large and heterogeneous datasets. In this paper, we introduce a Collaborative Filtering Neural network architecture aka CFN which computes a non-linear Matrix Factorization from sparse rating inputs and side information. We show experimentally on the MovieLens and Douban dataset that CFN outper-forms the state of the art and benefits from side information. We provide an implementation of the algorithm as a reusable plugin for Torch, a popular Neural Network framework

    Graph-embedding Enhanced Attention Adversarial Autoencoder

    Get PDF
    When dealing with the graph data in real problems, only part of the nodes in the graph are labeled and the rest are not. A core problem is how to use this information to extend the labeling so that all nodes are assigned a label (or labels). Intuitively we can learn the patterns (or extract some representations) from those labeled nodes and then apply the patterns to determine the membership for those unknown nodes. A majority of previous related studies focus on extracting the local information representations and may suffer from lack of additional constraints which are necessary for improving the robustness of representation. In this work, we presented Graph- embedding enhanced attention Adversarial Autoencoder Networks (Great AAN), a new scalable generalized framework for graph-structured data representation learning and node classification. In our framework, we firstly introduce the attention layers and provide insights on the self-attention mechanism with multi-heads. Moreover, the shortest path length between nodes is incorporated into the self-attention mechanism to enhance the embedding of the node’s structural spatial information. Then a generative adversarial autoencoder is proposed to encode both global and local information and enhance the robustness of the embedded data distribution. Due to the scalability of our approach, it has efficient and various applications, including node classification, a recommendation system, and graph link prediction. We applied this Great AAN on multiple datasets (including PPI, Cora, Citeseer, Pubmed and Alipay) from social science and biomedical science. The experimental results demonstrated that our new framework significantly outperforms several popular methods
    • …
    corecore