507 research outputs found

    Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions

    Full text link
    Generative Adversarial Networks (GANs) is a novel class of deep generative models which has recently gained significant attention. GANs learns complex and high-dimensional distributions implicitly over images, audio, and data. However, there exists major challenges in training of GANs, i.e., mode collapse, non-convergence and instability, due to inappropriate design of network architecture, use of objective function and selection of optimization algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs have been investigated based on techniques of re-engineered network architectures, new objective functions and alternative optimization algorithms. To the best of our knowledge, there is no existing survey that has particularly focused on broad and systematic developments of these solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and optimization solutions proposed to handle GANs challenges. We first identify key research issues within each design and optimization technique and then propose a new taxonomy to structure solutions by key research issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants proposed within each solution and their relationships. Finally, based on the insights gained, we present the promising research directions in this rapidly growing field.Comment: 42 pages, Figure 13, Table

    SALSA-TEXT : self attentive latent space based adversarial text generation

    Full text link
    Inspired by the success of self attention mechanism and Transformer architecture in sequence transduction and image generation applications, we propose novel self attention-based architectures to improve the performance of adversarial latent code- based schemes in text generation. Adversarial latent code-based text generation has recently gained a lot of attention due to their promising results. In this paper, we take a step to fortify the architectures used in these setups, specifically AAE and ARAE. We benchmark two latent code-based methods (AAE and ARAE) designed based on adversarial setups. In our experiments, the Google sentence compression dataset is utilized to compare our method with these methods using various objective and subjective measures. The experiments demonstrate the proposed (self) attention-based models outperform the state-of-the-art in adversarial code-based text generation.Comment: 10 pages, 3 figures, under review at ICLR 201

    Generating a Risk Profile for Car Insurance Policyholders: A Deep Learning Conceptual Model

    Get PDF
    In recent years, technological improvements have provided a variety of new opportunities for insurance companies to adopt telematics devices in line with usage-based insurance models. This paper sheds new light on the application of big data analytics for car insurance companies that may help to estimate the risks associated with individual policyholders based on complex driving patterns. We propose a conceptual framework that describes the structural design of a risk predictor model for insurance customers and combines the value of telematics data with deep learning algorithms. The model’s components consist of data transformation, criteria mining, risk modelling, driving style detection, and risk prediction. The expected outcome is our methodology that generates more accurate results than other methods in this area

    EEG Based Eye State Classification using Deep Belief Network and Stacked AutoEncoder

    Get PDF
    A Brain-Computer Interface (BCI) provides an alternative communication interface between the human brain and a computer. The Electroencephalogram (EEG) signals are acquired, processed and machine learning algorithms are further applied to extract useful information.  During  EEG acquisition,   artifacts  are induced due to involuntary eye movements or eye blink, casting adverse effects  on system performance. The aim of this research is to predict eye states from EEG signals using Deep learning architectures and present improved classifier models. Recent studies reflect that Deep Neural Networks are trending state of the art Machine learning approaches. Therefore, the current work presents the implementation of  Deep Belief Network (DBN) and Stacked AutoEncoders (SAE) as Classifiers with encouraging performance accuracy.  One of the designed  SAE models outperforms the  performance of DBN and the models presented in existing research by an impressive error rate of 1.1% on the test set bearing accuracy of 98.9%. The findings in this study,  may provide a contribution towards the state of  the  art performance on the problem of  EEG based eye state classification
    • …
    corecore