7 research outputs found

    Autonomous Vehicles: Autodriver Algorithm and Vehicle Dynamics

    Get PDF
    A given road can be expressed mathematically in a global (or world) coordinate frame. Following the road can be substituted by following the loci of its curvature center and turning at the right circle of curvature. Considering that a vehicle in motion is always in turn about an instantaneous rotation center relative to the ground, an autonomous vehicle capable of following a given path by coinciding the rotation center of vehicle at every moment on the curvature center of the road could be designed. The dynamic reactions of the vehicle influence its path of motion and make its rotation center to depart from the desired path of the curvature center of the road. In this study, the Autodriver algorithm control strategy to front-wheel-steering vehicles has been developed and a control loop is introduced to compensate the present errors generated by the differences of the desired locating on the road and the real position of the vehicle

    Application of the mathematical autodriver algorithm for autonomous vehicles

    Get PDF
    The mathematical theory for autonomous vehicles, which was initially developed for 4 Wheel steering vehicles was formulated to work for 2 wheel steering vehicles as well. This was the first step towards making the theory closer to practice. Then a sample road using clothoids as the transition curve was generated. Clothoid was used as the best transition curve according to the literature for mobile robots trajectory generation. This study ended up in development of a design chart which could be used for better road design. The sample road is used to find the kinematic steering angles required by the vehicle to stay on the road. The kinematic steering angles work well only at very low forward velocities. The dynamic differential equations of motion of the vehicle needed to be solved to make the study of motion of the vehicle possible in higher velocities. During high forward velocity travelling some factors will cause the vehicle to move on a road different to the desired path of motion. The sample road generated proved that the traditional method of solving differential equations of motion was not very effective especially in the case of complicated mathematical paths of motion. That is why a new method was sought for, which resulted in the generation of the Steady-State Dynamic Steering method. This method provides an alternative way of studying the dynamics of motion of a vehicle, which is proved to be much faster and less complicated than the traditional method. At the end the new method was, put in to test by trying different vehicle travelling manoeuvres. After validation of the new method it was used mathematically to take control of a car to travel a sample desired path of motion autonomously by using the mathematical theory of autonomous vehicles

    Proposal of Wireless Charging Method and Architecture to Increase Range in Electric Vehicles

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Electric vehicles (EVs) face a major issue before becoming the norm of society, that is, their lack of range when it comes to long trips. Fast charging stations are a good step forward to help make it simpler for EVs, but it is still not as convenient when compared to vehicles with an internal combustion engine (ICE). Plenty of infrastructure changes have been proposed in the literature attempting to tackle this issue, but they typically tend to be either an expensive solution or a difficult practical implementation. This dissertation presents two solutions to help increase the range of EVs: a novel wireless charging method and a multi-motor architecture for EVs. The first proposed solution involves the ability for EVs to charge while en route from another vehicle, which will be referred to from here on as vehicle-to-vehicle recharging (VVR). The aim of this system is to bring an innovative way for EVs to charge their battery without getting off route on a highway. The electric vehicle can request such a service from a designated charger vehicle on demand and receive electric power wirelessly while en route. The vehicles that provide energy (charger vehicles) through wireless power transfer (WPT) only need to be semi-autonomous in order to ``engage'' or ``disengage'' during a trip. Also, a novel method for wireless power transfer will be presented, where the emitter (TX) or receiver (RX) pads can change angles to improve the efficiency of power transmission. This type of WPT system would be suitable for the VVR system presented in this dissertation, along with other applications. The second solution presented here will be an architecture for EVs with three or more different electric motors to help prolong the state of charge (SOC) of the battery. The key here is to use motors with different high efficiency regions. The proposed control algorithm optimizes the use of the motors on-board to keep them running in their most efficient regions. With this architecture, the powertrain would see a combined efficiency map that incorporates the best operating points of the motors. Therefore, the proposed architecture will allow the EV to operate with a higher range for a given battery capacity. The state-of-the-art is divided into four subsections relevant to the proposed solutions and where most of the innovations to reduce the burden of charging EVs can be found: (1) infrastructure changes, (2) device level innovations, (3) autonomous vehicles, and (4) electric vehicle architectures. The infrastructure changes highlight some of the proposed systems that aim to help EVs become a convenient solution to the public. Device level innovations covers some of the literature on technology that addresses EVs in terms of WPT. The autonomous vehicle subsection covers the importance of such technology in terms of safety and reliability, that could be implemented on the VVR system. Finally, the EV architectures covers the current typologies used in EVs. Furthermore, modeling, analysis, and simulation is presented to validate the feasibility of the proposed VVR system, the WPT system, and the multi-motor architecture for EVs

    Gekapselte Trajektorienfolgeregelung für autonomes Fahren

    Get PDF
    Die Bewegungsregelung als Teil der autonomen Fahrzeugführung besteht aus den beiden Teilfunktionen der Bewegungsplanung und Bewegungsausführung. Beide wurden im Kontext von Fahrerassistenzsystemen und Anwendungen aus der Robotik bereits intensiv untersucht, jedoch haben bestehende Ansätze gemein, dass sie häufig auf einen spezifischen Anwendungsfall zugeschnitten sind sowie die beiden Teilfunktionen als Einheit betrachten und daher integriert entwickeln. Als Gegenentwurf zu integrierten Systemarchitekturen haben modulare, serviceorientierte Architekturen für Kraftfahrzeuge zunehmend an Bedeutung gewonnen, mit den Zielen, die resultierende Systemkomplexität zu senken, die Wiederverwertbarkeit von entwickelten Modulen in verschiedenen Anwendungen zu fördern sowie die Wart- und Updatebarkeit der Fahrzeuge zu verbessern. Die Modularisierung kann dabei auch auf die Bewegungsregelung angewendet werden und ermöglicht durch funktionale Trennung der Bewegungsplanung und –ausführung die konsequente Kapselung der ausführenden Fahrdynamik- und Trajektorienregelung (FTR), mit dem Ziel der Minimierung von Abhängigkeiten innerhalb des konsistenten Gesamtsystems. Dies legt die Grundlage für eine dynamische Rekonfiguration der Dienste im Fahrzeug, basierend auf dem derzeitigen Betriebsmodus. Neben den genannten Vorteilen führt die Entkopplung der beiden Teilfunktionen der Bewegungsregelung zu neuartigen Herausforderungen wie inkonsistenten Lokalisierungsinformationen, einer grundlegenden Asynchronität der Funktionen und der Notwendigkeit, die Bewegungsplanung möglichst ohne fahrzeugspezifische Adaptionen zu gestalten. Die vorliegende Arbeit untersucht die Auswirkungen einer gekapselten FTR auf die autonome Fahrzeugführung und präsentiert Lösungen, um die resultierenden Herausforderungen zu beherrschen. Aufbauend auf einer Anforderungsdefinition an die betrachtete FTR liegt als Ergebnis der Arbeit zunächst eine Analyse der Herausforderungen für die Bewegungsregelung innerhalb der definierten Systemarchitektur vor. Durch die Trennung der planenden und ausführenden Ebene führen inkonsistente Lokalisierungsinformationen zu unerwünschtem Verhalten wie einer systematischen Regelabweichung. Die Arbeit stellt den Lösungsraum dar, um solche Effekte zu vermeiden. So wird u. a. gezeigt, dass eine zusätzliche Lokalisierungsangleichung in Form einer Posen-Offsetkorrektur erforderlich ist, um den Einfluss abweichender Lokalisierungsinformationen auf die Regelgüte zu minimieren. Die Planung kinematisch und dynamisch nicht umsetzbarer Trajektorien hat einen negativen Einfluss auf die Fahrzeugführung und muss daher verhindert werden. Es wird dargelegt, dass über eine Rückmeldung von kinematischen und dynamischen Grenzen an die Bewegungsplanung sichergestellt werden kann, dass die Planungsebene nur erfüllbare Aufgaben an die FTR stellt und dass der Planungsalgorithmus darüber hinaus nicht an das betrachtete Fahrzeug adaptiert werden muss. Anforderungen hinsichtlich der Unabhängigkeit von einer konkreten Planungsinstanz sowie der Robustheit ggü. Planungslatenzen und Asynchronitäten werden durch die Definition einer geeigneten Trajektorienschnittstelle erfüllt. Die Schnittstelle ermöglicht darüber hinaus die Ausnutzung der Kenntnis zukünftiger Systemzustände im Rahmen einer prädiktiven Vorsteuerung, wodurch eine Umsetzung des transienten Fahrzeugverhaltens im offenen Regelkreis ermöglicht und somit eine Anpassung der Bewegungsplanung auf die nachgelagerte Aktorik verhindert wird. Auf Basis der zuvor identifizierten Handlungsbedarfe wird eine Referenzarchitektur und -implementierung für die FTR entwickelt sowie in Versuchen mit Simulationen und Realfahrzeugen nachgewiesen, dass die zuvor identifizierten Herausforderungen mit den aufgezeigten Lösungen beherrscht werden können. Mit der Arbeit wird somit die Grundlage für informierte Entscheidungen über die Fahrzeug-Systemarchitektur gelegt, da die mit einer funktionalen Trennung der planenden und ausführenden Ebene verbundenen Vor- bzw. Nachteile transparent ersichtlich sind
    corecore