6 research outputs found

    Automatic Bridge-based Interface for Differential Capacitive Full Sensing

    Get PDF
    Abstract The authors here propose, for the first time, an automatic analog interface for differential capacitance estimation, able to reveal and quantify both low and high (full-range) capacitive variations. The working principle is based on a modified De-Sauty AC bridge configuration where two differential capacitances and two resistances are employed, one of which is implemented by a Voltage Controlled Resistor (VCR). Through a suitable feedback loop, a very accurate estimation over the complete range of the differential capacitance variation is possible, while the bridge allows a continuous differential capacitance evaluation without the need of knowing the accurate value of the sensor baseline and/or its variation range. A general but very simple formula, considering both the "autobalancing" and the "out-of-equilibrium" ranges, is also given. Theoretical, experimental and simulated results are in a very good agreement. Sensitivity and resolution values, typical of sensors and their interfaces, have been determined in a practical case, showing satisfactory values

    An auto-balancing capacitance-to-pulse-width converter for capacitive sensors

    Get PDF
    A novel auto-balancing capacitance-to-pulse- width converter (CPC) that uses sinusoidal excitation, and operates in a closed-loop configuration, is presented in this paper. Unlike most of the existing CPCs, the proposed interface circuit is compatible with both single-element and differential capacitive sensors. In addition, it provides a pulse-width modulated (PWM) signal which can easily be digitized using a counter. From this PWM signal, a ratio output is derived when a single-element sensor is interfaced, and a ratiometric output is obtained for a differential sensor.The authors would like to thank the Department of Science and Technology (DST), Govt. of India, for its financial assistance (Grant Number SERB/F/4573/2016-17) in carrying out the research activities presented in this paper.Postprint (published version

    New Electronic Interface Circuits for Humidity Measurement Based on the Current Processing Technique

    Get PDF
    The paper describes a new electronic conditioning circuit based on the current-processing technique for accurate and reliable humidity measurement, without post-processing requirements. Pseudobrookite nanocrystalline (Fe2TiO5) thick film was used as capacitive humidity transducer in the proposed design. The interface integrated circuit was realized in TSMC 0.18 mu m CMOS technology, but commercial devices were used for practical realization. The sensing principle of the sensor was obtained by converting the information on environment humidity into a frequency variable square-wave electric current signal. The proposed solution features high linearity, insensitivity to temperature, as well as low power consumption. The sensor has a linear function with relative humidity in the range of Relative Humidity (RH) 30-90 %, error below 1.5 %, and sensitivity 8.3 x 10(14) Hz/F evaluated over the full range of changes. A fast recovery without the need of any refreshing methods was observed with a change in RH. The total power dissipation of readout circuitry was 1 mW

    CMOS Current Feedback Operational Amplifier-Based Relaxation Generator for Capacity to Voltage Sensor Interface

    Get PDF
    This paper presents a simple relaxation generator, suitable for a sensor interface, operating as a transducer of capacitance to frequency/period. The proposed circuit employs a current feedback operational amplifier, fabricated in I3T25 0.35 m ON Semiconductor CMOS process, and four passive elements including a grounded capacitor (the sensed parameter). It offers a low-impedance voltage output of the generated square wave. Additional frequency to DC voltage converter offers output information in the form of voltage. The experimental capacitance variation from 6.8 nF to 100 nF yields voltage change in the range from 21 mV to 106 mV with error below 5% and sensitivity 0.912 mV/nF evaluated over the full range of change. These values are in good agreement with simulation results obtained from the Mathcad model of frequency to DC voltage transducer passive circuit
    corecore