3 research outputs found

    Service level agreement specification for IoT application workflow activity deployment, configuration and monitoring

    Get PDF
    PhD ThesisCurrently, we see the use of the Internet of Things (IoT) within various domains such as healthcare, smart homes, smart cars, smart-x applications, and smart cities. The number of applications based on IoT and cloud computing is projected to increase rapidly over the next few years. IoT-based services must meet the guaranteed levels of quality of service (QoS) to match users’ expectations. Ensuring QoS through specifying the QoS constraints using service level agreements (SLAs) is crucial. Also because of the potentially highly complex nature of multi-layered IoT applications, lifecycle management (deployment, dynamic reconfiguration, and monitoring) needs to be automated. To achieve this it is essential to be able to specify SLAs in a machine-readable format. currently available SLA specification languages are unable to accommodate the unique characteristics (interdependency of its multi-layers) of the IoT domain. Therefore, in this research, we propose a grammar for a syntactical structure of an SLA specification for IoT. The grammar is based on a proposed conceptual model that considers the main concepts that can be used to express the requirements for most common hardware and software components of an IoT application on an end-to-end basis. We follow the Goal Question Metric (GQM) approach to evaluate the generality and expressiveness of the proposed grammar by reviewing its concepts and their predefined lists of vocabularies against two use-cases with a number of participants whose research interests are mainly related to IoT. The results of the analysis show that the proposed grammar achieved 91.70% of its generality goal and 93.43% of its expressiveness goal. To enhance the process of specifying SLA terms, We then developed a toolkit for creating SLA specifications for IoT applications. The toolkit is used to simplify the process of capturing the requirements of IoT applications. We demonstrate the effectiveness of the toolkit using a remote health monitoring service (RHMS) use-case as well as applying a user experience measure to evaluate the tool by applying a questionnaire-oriented approach. We discussed the applicability of our tool by including it as a core component of two different applications: 1) a contextaware recommender system for IoT configuration across layers; and 2) a tool for automatically translating an SLA from JSON to a smart contract, deploying it on different peer nodes that represent the contractual parties. The smart contract is able to monitor the created SLA using Blockchain technology. These two applications are utilized within our proposed SLA management framework for IoT. Furthermore, we propose a greedy heuristic algorithm to decentralize workflow activities of an IoT application across Edge and Cloud resources to enhance response time, cost, energy consumption and network usage. We evaluated the efficiency of our proposed approach using iFogSim simulator. The performance analysis shows that the proposed algorithm minimized cost, execution time, networking, and Cloud energy consumption compared to Cloud-only and edge-ward placement approaches

    AutoSLAM: a policy-based framework for automated SLA establishment in cloud environments

    No full text
    Cloud computing offers a realization of SOA in which IT resources are dynamically provisioned as services to consumers using flexible provisioning and pricing models. When provisioning such services, providers and consumers must first agree over the service usage terms and conditions, which are captured in Service Level Agreements (SLAs). In this paper, we propose a policy-based framework with corresponding models, mechanisms and tools for the automated establishment of SLAs in open, diverse and dynamic cloud environments. The Automated SLA Management framework allows entities to specify their requirements and capabilities, and preferences over them in a flexible and expressive manner. It also supports multiple interaction models for SLA establishment, giving consumers and providers the flexibility to select the one that is most appropriate in a given context, while simultaneously participating in multiple concurrent SLA interactions using different interaction models. As part of the framework, we define a formal model for the underlying policies, a corresponding physical model WS-SLAM that extends WS-Policy and a reference architecture that can be easily implemented. We validate the practicability of our framework through the Smart CloudPurchaser prototype that can automatically purchase computing resources from Amazon EC2 under different scenarios and contexts
    corecore