171 research outputs found

    Etude de l'adéquation des machines Exascale pour les algorithmes implémentant la méthode du Reverse Time Migation

    Get PDF
    As we are expecting Exascale systems for the 2018-2020 time frame, performance analysis and characterization of applications for new processor architectures and large scale systems are important tasks that permit to anticipate the required changes to efficiently exploit the future HPC systems. This thesis focuses on seismic imaging applications used for modeling complex physical phenomena, in particular the depth imaging application called Reverse Time Migration (RTM). My first contribution consists in characterizing and modeling the performance of the computational core of RTM which is based on finite-difference time-domain (FDTD) computations. I identify and explore the major tuning parameters influencing performance and the interaction between the architecture and the application. The second contribution is an analysis to identify the challenges for a hybrid and heterogeneous implementation of FDTD for manycore architectures. We target Intel’s first Xeon Phi co-processor, the Knights Corner. This architecture is an interesting proxy for our study since it contains some of the expected features of an Exascale system: concurrency and heterogeneity.My third contribution is an extension of the performance analysis and modeling to the full RTM. This adds communications and IOs to the computation part. RTM is a data intensive application and requires the storage of intermediate values of the computational field resulting in expensive IO accesses. My fourth contribution is the final measurement and model validation of my hybrid RTM implementation on a large system. This has been done on Stampede, a machine of the Texas Advanced Computing Center (TACC), which allows us to test the scalability up to 64 nodes each containing one 61-core Xeon Phi and two 8-core CPUs for a total close to 5000 heterogeneous coresLa caractérisation des applications en vue de les préparer pour les nouvelles architectures et les porter sur des systèmes très étendus est une étape importante pour pouvoir anticiper les modifications nécessaires. Comme les machines Exascale sont prévues pour la période 2018-2020, l'étude des applications et leur préparation pour ces machines s'avèrent donc essentielles. Nous nous intéressons aux applications d'imagerie sismique et en particulier à l'application Reverse Time Migration (RTM) car elle est très utilisée par les pétroliers dans le cadre de l'exploration sismique.La première partie de nos travaux a porté sur l'étude du cœur de calcul de l'application RTM qui consiste en un calcul de différences finies dans le domaine temporel (FDTD). Nous avons caractérisé cette partie de l'application en soulevant les aspects architecturaux des machines actuelles ayant un fort impact sur la performance, notamment les caches, les bandes passantes et le prefetching. Cette étude a abouti à l'élaboration d'un modèle de performance permettant de prédire le trafic DRAM des FDTD. La deuxième partie de la thèse se focalise sur l'impact de l'hétérogénéité et le parallélisme sur la FDTD et sur RTM. Nous avons choisi l'architecture manycore d’Intel, Xeon Phi, et nous avons étudié une implémentation "native" et une implémentation hétérogène et hybride, la version "symmetric". Enfin, nous avons porté l'application RTM sur un cluster hétérogène, Stampede du Texas Advanced Computing Center (TACC), où nous avons effectué des tests de scalabilité allant jusqu'à 64 nœuds contenant des coprocesseurs Xeon Phi et des processeurs Sandy Bridge ce qui correspond à presque 5000 cœur

    Resource and thermal management in 3D-stacked multi-/many-core systems

    Full text link
    Continuous semiconductor technology scaling and the rapid increase in computational needs have stimulated the emergence of multi-/many-core processors. While up to hundreds of cores can be placed on a single chip, the performance capacity of the cores cannot be fully exploited due to high latencies of interconnects and memory, high power consumption, and low manufacturing yield in traditional (2D) chips. 3D stacking is an emerging technology that aims to overcome these limitations of 2D designs by stacking processor dies over each other and using through-silicon-vias (TSVs) for on-chip communication, and thus, provides a large amount of on-chip resources and shortens communication latency. These benefits, however, are limited by challenges in high power densities and temperatures. 3D stacking also enables integrating heterogeneous technologies into a single chip. One example of heterogeneous integration is building many-core systems with silicon-photonic network-on-chip (PNoC), which reduces on-chip communication latency significantly and provides higher bandwidth compared to electrical links. However, silicon-photonic links are vulnerable to on-chip thermal and process variations. These variations can be countered by actively tuning the temperatures of optical devices through micro-heaters, but at the cost of substantial power overhead. This thesis claims that unearthing the energy efficiency potential of 3D-stacked systems requires intelligent and application-aware resource management. Specifically, the thesis improves energy efficiency of 3D-stacked systems via three major components of computing systems: cache, memory, and on-chip communication. We analyze characteristics of workloads in computation, memory usage, and communication, and present techniques that leverage these characteristics for energy-efficient computing. This thesis introduces 3D cache resource pooling, a cache design that allows for flexible heterogeneity in cache configuration across a 3D-stacked system and improves cache utilization and system energy efficiency. We also demonstrate the impact of resource pooling on a real prototype 3D system with scratchpad memory. At the main memory level, we claim that utilizing heterogeneous memory modules and memory object level management significantly helps with energy efficiency. This thesis proposes a memory management scheme at a finer granularity: memory object level, and a page allocation policy to leverage the heterogeneity of available memory modules and cater to the diverse memory requirements of workloads. On the on-chip communication side, we introduce an approach to limit the power overhead of PNoC in (3D) many-core systems through cross-layer thermal management. Our proposed thermally-aware workload allocation policies coupled with an adaptive thermal tuning policy minimize the required thermal tuning power for PNoC, and in this way, help broader integration of PNoC. The thesis also introduces techniques in placement and floorplanning of optical devices to reduce optical loss and, thus, laser source power consumption.2018-03-09T00:00:00

    Evaluating Performance of OpenMP Tasks in a Seismic Stencil Application

    Get PDF
    Simulations based on stencil computations (widely used in geosciences) have been dominated by the MPI+OpenMP programming model paradigm. Little effort has been devoted to experimenting with task-based parallelism in this context. We address this by introducing OpenMP task parallelism into the kernel of an industrial seismic modeling code, Minimod. We observe that even for these highly regular stencil computations, taskified kernels are competitive with traditional OpenMP-augmented loops, and in some experiments tasks even outperform loop parallelism. This promising result sets the stage for more complex computational patterns. Simulations involve more than just the stencil calculation: a collection of kernels is often needed to accomplish the scientific objective (e.g., I/O, boundary conditions). These kernels can often be computed simultaneously; however, implementing this simultaneous computation with traditional programming models is not trivial. The presented approach will be extended to cover simultaneous execution of several kernels, where we expect to fully exploit the benefits of task-based programming

    Seismic Wave Propagation Simulations on Low-power and Performance-centric Manycores

    Get PDF
    International audienceThe large processing requirements of seismic wave propagation simulations make High Performance Computing (HPC) architectures a natural choice for their execution. However, to keep both the current pace of performance improvements and the power consumption under a strict power budget, HPC systems must be more energy e than ever. As a response to this need, energy-e and low-power processors began to make their way into the market. In this paper we employ a novel low-power processor, the MPPA-256 manycore, to perform seismic wave propagation simulations. It has 256 cores connected by a NoC, no cache-coherence and only a limited amount of on-chip memory. We describe how its particular architectural characteristics influenced our solution for an energy-e implementation. As a counterpoint to the low-power MPPA-256 architecture, we employ Xeon Phi, a performance-centric manycore. Although both processors share some architectural similarities, the challenges to implement an e seismic wave propagation kernel on these platforms are very di↵erent. In this work we compare the performance and energy e of our implementations for these processors to proven and optimized solutions for other hardware platforms such as general-purpose processors and a GPU. Our experimental results show that MPPA-256 has the best energy e consuming at least 77 % less energy than the other evaluated platforms, whereas the performance of our solution for the Xeon Phi is on par with a state-of-the-art solution for GPUs

    Leveraging performance of 3D finite difference schemes in large scientific computing simulations

    Get PDF
    Gone are the days when engineers and scientists conducted most of their experiments empirically. During these decades, actual tests were carried out in order to assess the robustness and reliability of forthcoming product designs and prove theoretical models. With the advent of the computational era, scientific computing has definetely become a feasible solution compared with empirical methods, in terms of effort, cost and reliability. Large and massively parallel computational resources have reduced the simulation execution times and have improved their numerical results due to the refinement of the sampled domain. Several numerical methods coexist for solving the Partial Differential Equations (PDEs). Methods such as the Finite Element (FE) and the Finite Volume (FV) are specially well suited for dealing with problems where unstructured meshes are frequent. Unfortunately, this flexibility is not bestowed for free. These schemes entail higher memory latencies due to the handling of irregular data accesses. Conversely, the Finite Difference (FD) scheme has shown to be an efficient solution for problems where the structured meshes suit the domain requirements. Many scientific areas use this scheme due to its higher performance. This thesis focuses on improving FD schemes to leverage the performance of large scientific computing simulations. Different techniques are proposed such as the Semi-stencil, a novel algorithm that increases the FLOP/Byte ratio for medium- and high-order stencils operators by reducing the accesses and endorsing data reuse. The algorithm is orthogonal and can be combined with techniques such as spatial- or time-blocking, adding further improvement. New trends on Symmetric Multi-Processing (SMP) systems -where tens of cores are replicated on the same die- pose new challenges due to the exacerbation of the memory wall problem. In order to alleviate this issue, our research is focused on different strategies to reduce pressure on the cache hierarchy, particularly when different threads are sharing resources due to Simultaneous Multi-Threading (SMT). Several domain decomposition schedulers for work-load balance are introduced ensuring quasi-optimal results without jeopardizing the overall performance. We combine these schedulers with spatial-blocking and auto-tuning techniques, exploring the parametric space and reducing misses in last level cache. As alternative to brute-force methods used in auto-tuning, where a huge parametric space must be traversed to find a suboptimal candidate, performance models are a feasible solution. Performance models can predict the performance on different architectures, selecting suboptimal parameters almost instantly. In this thesis, we devise a flexible and extensible performance model for stencils. The proposed model is capable of supporting multi- and many-core architectures including complex features such as hardware prefetchers, SMT context and algorithmic optimizations. Our model can be used not only to forecast execution time, but also to make decisions about the best algorithmic parameters. Moreover, it can be included in run-time optimizers to decide the best SMT configuration based on the execution environment. Some industries rely heavily on FD-based techniques for their codes. Nevertheless, many cumbersome aspects arising in industry are still scarcely considered in academia research. In this regard, we have collaborated in the implementation of a FD framework which covers the most important features that an HPC industrial application must include. Some of the node-level optimization techniques devised in this thesis have been included into the framework in order to contribute in the overall application performance. We show results for a couple of strategic applications in industry: an atmospheric transport model that simulates the dispersal of volcanic ash and a seismic imaging model used in Oil & Gas industry to identify hydrocarbon-rich reservoirs.Atrás quedaron los días en los que ingenieros y científicos realizaban sus experimentos empíricamente. Durante esas décadas, se llevaban a cabo ensayos reales para verificar la robustez y fiabilidad de productos venideros y probar modelos teóricos. Con la llegada de la era computacional, la computación científica se ha convertido en una solución factible comparada con métodos empíricos, en términos de esfuerzo, coste y fiabilidad. Los supercomputadores han reducido el tiempo de las simulaciones y han mejorado los resultados numéricos gracias al refinamiento del dominio. Diversos métodos numéricos coexisten para resolver las Ecuaciones Diferenciales Parciales (EDPs). Métodos como Elementos Finitos (EF) y Volúmenes Finitos (VF) están bien adaptados para tratar problemas donde las mallas no estructuradas son frecuentes. Desafortunadamente, esta flexibilidad no se confiere de forma gratuita. Estos esquemas conllevan latencias más altas debido al acceso irregular de datos. En cambio, el esquema de Diferencias Finitas (DF) ha demostrado ser una solución eficiente cuando las mallas estructuradas se adaptan a los requerimientos. Esta tesis se enfoca en mejorar los esquemas DF para impulsar el rendimiento de las simulaciones en la computación científica. Se proponen diferentes técnicas, como el Semi-stencil, un nuevo algoritmo que incrementa el ratio de FLOP/Byte para operadores de stencil de orden medio y alto reduciendo los accesos y promoviendo el reuso de datos. El algoritmo es ortogonal y puede ser combinado con técnicas como spatial- o time-blocking, añadiendo mejoras adicionales. Las nuevas tendencias hacia sistemas con procesadores multi-simétricos (SMP) -donde decenas de cores son replicados en el mismo procesador- plantean nuevos retos debido a la exacerbación del problema del ancho de memoria. Para paliar este problema, nuestra investigación se centra en estrategias para reducir la presión en la jerarquía de cache, particularmente cuando diversos threads comparten recursos debido a Simultaneous Multi-Threading (SMT). Introducimos diversos planificadores de descomposición de dominios para balancear la carga asegurando resultados casi óptimos sin poner en riesgo el rendimiento global. Combinamos estos planificadores con técnicas de spatial-blocking y auto-tuning, explorando el espacio paramétrico y reduciendo los fallos en la cache de último nivel. Como alternativa a los métodos de fuerza bruta usados en auto-tuning donde un espacio paramétrico se debe recorrer para encontrar un candidato, los modelos de rendimiento son una solución factible. Los modelos de rendimiento pueden predecir el rendimiento en diferentes arquitecturas, seleccionando parámetros suboptimos casi de forma instantánea. En esta tesis, ideamos un modelo de rendimiento para stencils flexible y extensible. El modelo es capaz de soportar arquitecturas multi-core incluyendo características complejas como prefetchers, SMT y optimizaciones algorítmicas. Nuestro modelo puede ser usado no solo para predecir los tiempos de ejecución, sino también para tomar decisiones de los mejores parámetros algorítmicos. Además, puede ser incluido en optimizadores run-time para decidir la mejor configuración SMT. Algunas industrias confían en técnicas DF para sus códigos. Sin embargo, no todos los aspectos que aparecen en la industria han sido sometidos a investigación. En este aspecto, hemos diseñado e implementado desde cero una infraestructura DF que cubre las características más importantes que una aplicación industrial debe incluir. Algunas de las técnicas de optimización propuestas en esta tesis han sido incluidas para contribuir en el rendimiento global a nivel industrial. Mostramos resultados de un par de aplicaciones estratégicas para la industria: un modelo de transporte atmosférico que simula la dispersión de ceniza volcánica y un modelo de imagen sísmica usado en la industria del petroleo y gas para identificar reservas ricas en hidrocarburo

    Performance Analysis and Optimization of a Hybrid Distributed Reverse Time Migration Application

    Get PDF
    To fully exploit emerging processor architectures, programs will need to employ threaded parallelism within a node and message passing across nodes. Today, MPI+OpenMP is the preferred programming model for this task. However, tuning MPI+OpenMP programs for clusters is difficult. Performance tools can help users identify bottlenecks and uncover opportunities for improvement. Applications to analyze seismic data employ scalable parallel systems to produce timely results. This thesis describes our experiences of applying performance tools to gain insight into an MPI+OpenMP code that performs Reverse Time Migration (RTM) to analyze seismic data and also assess the capabilities of available tools for analyzing the performance of a sophisticated application that employ both message-passing and threaded parallelism. The tools provided us with insights into the effectiveness of the domain decomposition strategy, the use of threaded parallelism, and functional unit utilization in individual cores. By applying insights obtained from Rice University's HPCToolkit and hardware performance counters, we were able to improve the performance of the RTM code by roughly 30 percent

    Doctor of Philosophy

    Get PDF
    dissertationRecent trends in high performance computing present larger and more diverse computers using multicore nodes possibly with accelerators and/or coprocessors and reduced memory. These changes pose formidable challenges for applications code to attain scalability. Software frameworks that execute machine-independent applications code using a runtime system that shields users from architectural complexities oer a portable solution for easy programming. The Uintah framework, for example, solves a broad class of large-scale problems on structured adaptive grids using fluid-flow solvers coupled with particle-based solids methods. However, the original Uintah code had limited scalability as tasks were run in a predefined order based solely on static analysis of the task graph and used only message passing interface (MPI) for parallelism. By using a new hybrid multithread and MPI runtime system, this research has made it possible for Uintah to scale to 700K central processing unit (CPU) cores when solving challenging fluid-structure interaction problems. Those problems often involve moving objects with adaptive mesh refinement and thus with highly variable and unpredictable work patterns. This research has also demonstrated an ability to run capability jobs on the heterogeneous systems with Nvidia graphics processing unit (GPU) accelerators or Intel Xeon Phi coprocessors. The new runtime system for Uintah executes directed acyclic graphs of computational tasks with a scalable asynchronous and dynamic runtime system for multicore CPUs and/or accelerators/coprocessors on a node. Uintah's clear separation between application and runtime code has led to scalability increases without significant changes to application code. This research concludes that the adaptive directed acyclic graph (DAG)-based approach provides a very powerful abstraction for solving challenging multiscale multiphysics engineering problems. Excellent scalability with regard to the different processors and communications performance are achieved on some of the largest and most powerful computers available today

    Programming Abstractions for Data Locality

    Get PDF
    The goal of the workshop and this report is to identify common themes and standardize concepts for locality-preserving abstractions for exascale programming models. Current software tools are built on the premise that computing is the most expensive component, we are rapidly moving to an era that computing is cheap and massively parallel while data movement dominates energy and performance costs. In order to respond to exascale systems (the next generation of high performance computing systems), the scientific computing community needs to refactor their applications to align with the emerging data-centric paradigm. Our applications must be evolved to express information about data locality. Unfortunately current programming environments offer few ways to do so. They ignore the incurred cost of communication and simply rely on the hardware cache coherency to virtualize data movement. With the increasing importance of task-level parallelism on future systems, task models have to support constructs that express data locality and affinity. At the system level, communication libraries implicitly assume all the processing elements are equidistant to each other. In order to take advantage of emerging technologies, application developers need a set of programming abstractions to describe data locality for the new computing ecosystem. The new programming paradigm should be more data centric and allow to describe how to decompose and how to layout data in the memory.Fortunately, there are many emerging concepts such as constructs for tiling, data layout, array views, task and thread affinity, and topology aware communication libraries for managing data locality. There is an opportunity to identify commonalities in strategy to enable us to combine the best of these concepts to develop a comprehensive approach to expressing and managing data locality on exascale programming systems. These programming model abstractions can expose crucial information about data locality to the compiler and runtime system to enable performance-portable code. The research question is to identify the right level of abstraction, which includes techniques that range from template libraries all the way to completely new languages to achieve this goal
    • …
    corecore