19,781 research outputs found

    Initial operating capability for the hypercluster parallel-processing test bed

    Get PDF
    The NASA Lewis Research Center is investigating the benefits of parallel processing to applications in computational fluid and structural mechanics. To aid this investigation, NASA Lewis is developing the Hypercluster, a multi-architecture, parallel-processing test bed. The initial operating capability (IOC) being developed for the Hypercluster is described. The IOC will provide a user with a programming/operating environment that is interactive, responsive, and easy to use. The IOC effort includes the development of the Hypercluster Operating System (HYCLOPS). HYCLOPS runs in conjunction with a vendor-supplied disk operating system on a Front-End Processor (FEP) to provide interactive, run-time operations such as program loading, execution, memory editing, and data retrieval. Run-time libraries, that augment the FEP FORTRAN libraries, are being developed to support parallel and vector processing on the Hypercluster. Special utilities are being provided to enable passage of information about application programs and their mapping to the operating system. Communications between the FEP and the Hypercluster are being handled by dedicated processors, each running a Message-Passing Kernel, (MPK). A shared-memory interface allows rapid data exchange between HYCLOPS and the communications processors. Input/output handlers are built into the HYCLOPS-MPK interface, eliminating the need for the user to supply separate I/O support programs on the FEP

    Risk to civilization: A planetary science perspective

    Get PDF
    One of the most profound changes in our perspective of the solar system resulting from the first quarter century of planetary exploration by spacecraft is the recognition that planets, including Earth, were bombarded by cosmic projectiles for 4.5 aeons and continue to be bombarded today. Although the planetary cratering rate is much lower now than it was during the first 0.5 aeons, sizeable Earth-approaching asteroids and comets continue to hit the Earth at a rate that poses a finite risk to civilization. The evolution of this planetary perspective on impact cratering is gradual over the last two decades. It took explorations of Mars and Mercury by early Mariner spacecraft and of the outer solar system by the Voyagers to reveal the significance of asteroidal and cometary impacts in shaping the morphologies and even chemical compositions of the planets. An unsettling implication of the new perspective is addressed: the risk to human civilization. Serious scientific attention was given to this issue in July 1981 at a NASA-sponsored Spacewatch Workshop in Snowmass, Colorado. The basic conclusion of the 1981 NASA sponsored workshop still stands: the risk that civilization might be destroyed by impact with an as-yet-undiscovered asteroid or comet exceeds risk levels that are sometimes deemed unacceptable by modern societies in other contexts. Yet these impact risks have gone almost undiscussed and undebated. The tentative quantitative assessment by some members of the 1981 workshop was that each year, civilization is threatened with destruction with a probability of about 1 in 100,000. The enormous spread in risk levels deemed by the public to be at the threshold of acceptability derives from a host of psychological factors that were widely discussed in the risk assessment literature. Slovic shows that public fears of hazards are greatest for hazards that are uncontrollable, involuntary, fatal, dreadful, globally catastrophic, and which have consequences that seem inequitable, especially if they affect future generations

    Automation and robotics considerations for a lunar base

    Get PDF
    An envisioned lunar outpost shares with other NASA missions many of the same criteria that have prompted the development of intelligent automation techniques with NASA. Because of increased radiation hazards, crew surface activities will probably be even more restricted than current extravehicular activity in low Earth orbit. Crew availability for routine and repetitive tasks will be at least as limited as that envisioned for the space station, particularly in the early phases of lunar development. Certain tasks are better suited to the untiring watchfulness of computers, such as the monitoring and diagnosis of multiple complex systems, and the perception and analysis of slowly developing faults in such systems. In addition, mounting costs and constrained budgets require that human resource requirements for ground control be minimized. This paper provides a glimpse of certain lunar base tasks as seen through the lens of automation and robotic (A&R) considerations. This can allow a more efficient focusing of research and development not only in A&R, but also in those technologies that will depend on A&R in the lunar environment
    • …
    corecore