572 research outputs found

    DesignNet: a online knowledge gateway for industrial design education and research activities

    Get PDF
    This paper presents DesignNet, a knowledge-based system to the online digital display, retrieval and archiving of rich media resources for industrial design education and research. It addresses the needs of end-users (teachers, researchers and students) and content providers interacting with the School of Design of the Politecnico di Milano. The project moves from the assumption that traditional modalities of archiving and presentation currently adopted by the Politecnico and other academic institutions are not coherent with industrial design process and its need of project-support materials. The typical outputs of industrial design process are 3D models or 2D graphics, not just texts or simple images, the materials for which the usual method and technique of archiving and retrieval are conceived and developed. The challenges, philosophy and methodology in creating this evolving Web-based, cataloguing, multimedia knowledge-base to VR design resources are discussed. Finally, the related system and prototype are described

    METADATA MANAGEMENT FOR CLINICAL DATA INTEGRATION

    Get PDF
    Clinical data have been continuously collected and growing with the wide adoption of electronic health records (EHR). Clinical data have provided the foundation to facilitate state-of-art researches such as artificial intelligence in medicine. At the same time, it has become a challenge to integrate, access, and explore study-level patient data from large volumes of data from heterogeneous databases. Effective, fine-grained, cross-cohort data exploration, and semantically enabled approaches and systems are needed. To build semantically enabled systems, we need to leverage existing terminology systems and ontologies. Numerous ontologies have been developed recently and they play an important role in semantically enabled applications. Because they contain valuable codified knowledge, the management of these ontologies, as metadata, also requires systematic approaches. Moreover, in most clinical settings, patient data are collected with the help of a data dictionary. Knowledge of the relationships between an ontology and a related data dictionary is important for semantic interoperability. Such relationships are represented and maintained by mappings. Mappings store how data source elements and domain ontology concepts are linked, as well as how domain ontology concepts are linked between different ontologies. While mappings are crucial to the maintenance of relationships between an ontology and a related data dictionary, they are commonly captured by CSV files with limits capabilities for sharing, tracking, and visualization. The management of mappings requires an innovative, interactive, and collaborative approach. Metadata management servers to organize data that describes other data. In computer science and information science, ontology is the metadata consisting of the representation, naming, and definition of the hierarchies, properties, and relations between concepts. A structural, scalable, and computer understandable way for metadata management is critical to developing systems with the fine-grained data exploration capabilities. This dissertation presents a systematic approach called MetaSphere using metadata and ontologies to support the management and integration of clinical research data through our ontology-based metadata management system for multiple domains. MetaSphere is a general framework that aims to manage specific domain metadata, provide fine-grained data exploration interface, and store patient data in data warehouses. Moreover, MetaSphere provides a dedicated mapping interface called Interactive Mapping Interface (IMI) to map the data dictionary to well-recognized and standardized ontologies. MetaSphere has been applied to three domains successfully, sleep domain (X-search), pressure ulcer injuries and deep tissue pressure (SCIPUDSphere), and cancer. Specifically, MetaSphere stores domain ontology structurally in databases. Patient data in the corresponding domains are also stored in databases as data warehouses. MetaSphere provides a powerful query interface to enable interaction between human and actual patient data. Query interface is a mechanism allowing researchers to compose complex queries to pinpoint specific cohort over a large amount of patient data. The MetaSphere framework has been instantiated into three domains successfully and the detailed results are as below. X-search is publicly available at https://www.x-search.net with nine sleep domain datasets consisting of over 26,000 unique subjects. The canonical data dictionary contains over 900 common data elements across the datasets. X-search has received over 1800 cross-cohort queries by users from 16 countries. SCIPUDSphere has integrated a total number of 268,562 records containing 282 ICD9 codes related to pressure ulcer injuries among 36,626 individuals with spinal cord injuries. IMI is publicly available at http://epi-tome.com/. Using IMI, we have successfully mapped the North American Association of Central Cancer Registries (NAACCR) data dictionary to the National Cancer Institute Thesaurus (NCIt) concepts

    Proceedings of the 9th Dutch-Belgian Information Retrieval Workshop

    Get PDF

    Concept-based Interactive Query Expansion Support Tool (CIQUEST)

    Get PDF
    This report describes a three-year project (2000-03) undertaken in the Information Studies Department at The University of Sheffield and funded by Resource, The Council for Museums, Archives and Libraries. The overall aim of the research was to provide user support for query formulation and reformulation in searching large-scale textual resources including those of the World Wide Web. More specifically the objectives were: to investigate and evaluate methods for the automatic generation and organisation of concepts derived from retrieved document sets, based on statistical methods for term weighting; and to conduct user-based evaluations on the understanding, presentation and retrieval effectiveness of concept structures in selecting candidate terms for interactive query expansion. The TREC test collection formed the basis for the seven evaluative experiments conducted in the course of the project. These formed four distinct phases in the project plan. In the first phase, a series of experiments was conducted to investigate further techniques for concept derivation and hierarchical organisation and structure. The second phase was concerned with user-based validation of the concept structures. Results of phases 1 and 2 informed on the design of the test system and the user interface was developed in phase 3. The final phase entailed a user-based summative evaluation of the CiQuest system. The main findings demonstrate that concept hierarchies can effectively be generated from sets of retrieved documents and displayed to searchers in a meaningful way. The approach provides the searcher with an overview of the contents of the retrieved documents, which in turn facilitates the viewing of documents and selection of the most relevant ones. Concept hierarchies are a good source of terms for query expansion and can improve precision. The extraction of descriptive phrases as an alternative source of terms was also effective. With respect to presentation, cascading menus were easy to browse for selecting terms and for viewing documents. In conclusion the project dissemination programme and future work are outlined

    Decoding learning: the proof, promise and potential of digital education

    Get PDF
    With hundreds of millions of pounds spent on digital technology for education every year – from interactive whiteboards to the rise of one–to–one tablet computers – every new technology seems to offer unlimited promise to learning. many sectors have benefitted immensely from harnessing innovative uses of technology. cloud computing, mobile communications and internet applications have changed the way manufacturing, finance, business services, the media and retailers operate. But key questions remain in education: has the range of technologies helped improve learners’ experiences and the standards they achieve? or is this investment just languishing as kit in the cupboard? and what more can decision makers, schools, teachers, parents and the technology industry do to ensure the full potential of innovative technology is exploited? There is no doubt that digital technologies have had a profound impact upon the management of learning. institutions can now recruit, register, monitor, and report on students with a new economy, efficiency, and (sometimes) creativity. yet, evidence of digital technologies producing real transformation in learning and teaching remains elusive. The education sector has invested heavily in digital technology; but this investment has not yet resulted in the radical improvements to learning experiences and educational attainment. in 2011, the Review of Education Capital found that maintained schools spent £487 million on icT equipment and services in 2009-2010. 1 since then, the education system has entered a state of flux with changes to the curriculum, shifts in funding, and increasing school autonomy. While ring-fenced funding for icT equipment and services has since ceased, a survey of 1,317 schools in July 2012 by the british educational suppliers association found they were assigning an increasing amount of their budget to technology. With greater freedom and enthusiasm towards technology in education, schools and teachers have become more discerning and are beginning to demand more evidence to justify their spending and strategies. This is both a challenge and an opportunity as it puts schools in greater charge of their spending and use of technolog

    The Future of Information Sciences : INFuture2009 : Digital Resources and Knowledge Sharing

    Get PDF

    Efficient query expansion

    Get PDF
    Hundreds of millions of users each day search the web and other repositories to meet their information needs. However, queries can fail to find documents due to a mismatch in terminology. Query expansion seeks to address this problem by automatically adding terms from highly ranked documents to the query. While query expansion has been shown to be effective at improving query performance, the gain in effectiveness comes at a cost: expansion is slow and resource-intensive. Current techniques for query expansion use fixed values for key parameters, determined by tuning on test collections. We show that these parameters may not be generally applicable, and, more significantly, that the assumption that the same parameter settings can be used for all queries is invalid. Using detailed experiments, we demonstrate that new methods for choosing parameters must be found. In conventional approaches to query expansion, the additional terms are selected from highly ranked documents returned from an initial retrieval run. We demonstrate a new method of obtaining expansion terms, based on past user queries that are associated with documents in the collection. The most effective query expansion methods rely on costly retrieval and processing of feedback documents. We explore alternative methods for reducing query-evaluation costs, and propose a new method based on keeping a brief summary of each document in memory. This method allows query expansion to proceed three times faster than previously, while approximating the effectiveness of standard expansion. We investigate the use of document expansion, in which documents are augmented with related terms extracted from the corpus during indexing, as an alternative to query expansion. The overheads at query time are small. We propose and explore a range of corpus-based document expansion techniques and compare them to corpus-based query expansion on TREC data. These experiments show that document expansion delivers at best limited benefits, while query expansion, including standard techniques and efficient approaches described in recent work, usually delivers good gains. We conclude that document expansion is unpromising, but it is likely that the efficiency of query expansion can be further improved

    Medical Informatics

    Get PDF
    Information technology has been revolutionizing the everyday life of the common man, while medical science has been making rapid strides in understanding disease mechanisms, developing diagnostic techniques and effecting successful treatment regimen, even for those cases which would have been classified as a poor prognosis a decade earlier. The confluence of information technology and biomedicine has brought into its ambit additional dimensions of computerized databases for patient conditions, revolutionizing the way health care and patient information is recorded, processed, interpreted and utilized for improving the quality of life. This book consists of seven chapters dealing with the three primary issues of medical information acquisition from a patient's and health care professional's perspective, translational approaches from a researcher's point of view, and finally the application potential as required by the clinicians/physician. The book covers modern issues in Information Technology, Bioinformatics Methods and Clinical Applications. The chapters describe the basic process of acquisition of information in a health system, recent technological developments in biomedicine and the realistic evaluation of medical informatics
    • 

    corecore