7,758 research outputs found

    Reinforcement Learning for Racecar Control

    Get PDF
    This thesis investigates the use of reinforcement learning to learn to drive a racecar in the simulated environment of the Robot Automobile Racing Simulator. Real-life race driving is known to be difficult for humans, and expert human drivers use complex sequences of actions. There are a large number of variables, some of which change stochastically and all of which may affect the outcome. This makes driving a promising domain for testing and developing Machine Learning techniques that have the potential to be robust enough to work in the real world. Therefore the principles of the algorithms from this work may be applicable to a range of problems. The investigation starts by finding a suitable data structure to represent the information learnt. This is tested using supervised learning. Reinforcement learning is added and roughly tuned, and the supervised learning is then removed. A simple tabular representation is found satisfactory, and this avoids difficulties with more complex methods and allows the investigation to concentrate on the essentials of learning. Various reward sources are tested and a combination of three are found to produce the best performance. Exploration of the problem space is investigated. Results show exploration is essential but controlling how much is done is also important. It turns out the learning episodes need to be very long and because of this the task needs to be treated as continuous by using discounting to limit the size of the variables stored. Eligibility traces are used with success to make the learning more efficient. The tabular representation is made more compact by hashing and more accurate by using smaller buckets. This slows the learning but produces better driving. The improvement given by a rough form of generalisation indicates the replacement of the tabular method by a function approximator is warranted. These results show reinforcement learning can work within the Robot Automobile Racing Simulator, and lay the foundations for building a more efficient and competitive agent

    Hashing over Predicted Future Frames for Informed Exploration of Deep Reinforcement Learning

    Full text link
    In deep reinforcement learning (RL) tasks, an efficient exploration mechanism should be able to encourage an agent to take actions that lead to less frequent states which may yield higher accumulative future return. However, both knowing about the future and evaluating the frequentness of states are non-trivial tasks, especially for deep RL domains, where a state is represented by high-dimensional image frames. In this paper, we propose a novel informed exploration framework for deep RL, where we build the capability for an RL agent to predict over the future transitions and evaluate the frequentness for the predicted future frames in a meaningful manner. To this end, we train a deep prediction model to predict future frames given a state-action pair, and a convolutional autoencoder model to hash over the seen frames. In addition, to utilize the counts derived from the seen frames to evaluate the frequentness for the predicted frames, we tackle the challenge of matching the predicted future frames and their corresponding seen frames at the latent feature level. In this way, we derive a reliable metric for evaluating the novelty of the future direction pointed by each action, and hence inform the agent to explore the least frequent one

    Bayesian Reinforcement Learning via Deep, Sparse Sampling

    Full text link
    We address the problem of Bayesian reinforcement learning using efficient model-based online planning. We propose an optimism-free Bayes-adaptive algorithm to induce deeper and sparser exploration with a theoretical bound on its performance relative to the Bayes optimal policy, with a lower computational complexity. The main novelty is the use of a candidate policy generator, to generate long-term options in the planning tree (over beliefs), which allows us to create much sparser and deeper trees. Experimental results on different environments show that in comparison to the state-of-the-art, our algorithm is both computationally more efficient, and obtains significantly higher reward in discrete environments.Comment: Published in AISTATS 202
    corecore