78 research outputs found

    Robust Eigen-Filter Design for Ultrasound Flow Imaging Using a Multivariate Clustering

    Get PDF
    Blood flow visualization is a challenging task in the presence of tissue motion. Unsuppressed tissue clutter produces flashing artefacts in ultrasound flow imaging which hampers blood flow detection by dominating part of the blood flow signal in certain challenging clinical imaging applications, ranging from cardiac imaging (maximal tissue vibrations) to microvascular flow imaging (very low blood flow speeds). Conventional clutter filtering techniques perform poorly since blood and tissue clutter echoes share similar spectral characteristics. Eigen-based filtering was recently introduced and has shown good clutter rejection performance; however, flow detection performance in eigen filtering suffers if tissue and flow signal subspaces overlap after eigen components are projected to a single signal feature space for clutter rank selection. To address this issue, a novel multivariate clustering based singular value decomposition (SVD) filter design is developed. The proposed multivariate clustering based filter robustly detects and removes non-blood eigen components by leveraging on three key spatiotemporal statistics: singular value magnitude, spatial correlation and the mean Doppler frequency of singular vectors. A better clutter suppression framework is necessary for high-frame-rate (HFR) ultrasound imaging since it is more susceptible to tissue motion due to poorer spatial resolution (tissue clutter bleeds into flow pixels easily). Hence, to test the clutter rejection performance of the proposed filter, HFR plane wave data was acquired from an in vitro flow phantom testbed and in vivo from a subject’s common carotid artery and jugular vein region induced with extrinsic tissue motion (voluntary probe motion). The proposed method was able to adaptively detect and preserve blood eigen components and enabled fully automatic identification of eigen components corresponding to tissue clutter, blood and noise that removes dependency on the operator for optimal rank selection. The flow detection efficacy of the proposed multivariate clustering based SVD filter was statistically evaluated and compared with current clutter rank estimation methods using the receiver operating characteristic (ROC) analysis. Results for both in vitro and in vivo experiments showed that the multivariate clustering based SVD filter yielded the highest area under the ROC curve at both peak systole (0.98 for in vitro; 0.95 for in vivo) and end diastole (0.96 for in vitro; 0.93 for in vivo) in comparison with other clutter rank estimation methods, signifying its improved flow detection capability. The impact of this work is on the automated as well as adaptive (in contrast to a fixed cut-off) selection of eigen components which can potentially allow to overcome the flow detection challenges associated with fast tissue motion in cardiovascular imaging and slow flow in microvascular imaging which is critical for cancer diagnoses

    Measuring blood flow and pro-inflammatory changes in the rabbit aorta

    Get PDF
    Atherosclerosis is a chronic inflammatory disease that develops as a consequence of progressive entrapment of low density lipoprotein, fibrous proteins and inflammatory cells in the arterial intima. Once triggered, a myriad of inflammatory and atherogenic factors mediate disease progression. However, the role of pro-inflammatory activity in the initiation of atherogenesis and its relation to altered mechanical stresses acting on the arterial wall is unclear. Estimation of wall shear stress (WSS) and the inflammatory mediator NF-ÎșB is consequently useful. In this thesis novel ultrasound tools for accurate measurement of spatiotemporally varying 2D and 3D blood flow, with and without the use of contrast agents, have been developed. This allowed for the first time accurate, broad-view quantification of WSS around branches of the rabbit abdominal aorta. A thorough review of the evidence for a relationship between flow, NF-ÎșB and disease was performed which highlighted discrepancies in the current literature and was used to guide the study design. Subsequently, methods for the measurement and colocalization of the spatial distribution of NF-ÎșB, arterial permeability and nuclear morphology in the aorta of New Zealand White rabbits were developed. It was demonstrated that endothelial pro-inflammatory changes are spatially correlated with patterns of WSS, nuclear morphology and arterial permeability in vivo in the rabbit descending and abdominal aorta. The data are consistent with a causal chain between WSS, macromolecule uptake, inflammation and disease, and with the hypothesis that lipids are deposited first, through flow-mediated naturally occurring transmigration that, in excessive amounts, leads to subsequent inflammation and disease.Open Acces

    Advanced Sensing and Image Processing Techniques for Healthcare Applications

    Get PDF
    This Special Issue aims to attract the latest research and findings in the design, development and experimentation of healthcare-related technologies. This includes, but is not limited to, using novel sensing, imaging, data processing, machine learning, and artificially intelligent devices and algorithms to assist/monitor the elderly, patients, and the disabled population

    A multimodal lens into vascular recovery in a preclinical model of peripheral arterial disease

    Get PDF
    In the week of February 2nd (21 days into gestation) my parents Ali, and Aicha heard my first heart beat. This shouldn't be a surprise as the heart is the first organ to form and function during the developmental stages of the fetus. In the embryo, newly formed blood vessels provide the growing organs with the vital oxygen and nutrients required for them to flourish. During adulthood, angiogenesis---the process by which new blood vessels form---remains largely quiescent until the delicate balance between pro- and anti-angiogenic factors is disrupted, either through injury or disease. Cardiovascular complications are among the leading causes of morbidity and mortality in diabetic patients, and account for over 80\% of diabetes-associated deaths. One of the most serious is peripheral arterial disease (PAD), which is defined as a narowing of the peripheral vasculature. In this thesis, I will employ a range of imaging modalities to study PAD, investigating methods that may one day enable earlier detection of the disease, and exploring the therapeutic potential of stem cells to treat vascular complications associated with diabetes. This document is divided into four main chapters. The first chapter describes the biological characterization of two different imaging probes targeted, respectively, at hypoxia and \avbt activity, as well as a new power Doppler ultrasound imaging technique capable of detecting small spatiotemporal changes in blood perfusion within muscle. The second chapters applies the \cuProbe peptide targeted at \avbt, to establish an optimal preclinical model of PAD. The third chapter builds on the first and second, by developing a multimodal approach for vascular imaging that enables simultaneous evaluation of molecular and physiological changes during angiogenesis. Finally, the fourth chapter turns its attention toward the mitigation of diabetes-associated PAD. In it, we show that a targeted stem cell-based therapy can exert far reaching effects on the ischemic tissue microenvironment, and may provide clinical improvement for PAD patients in the future

    Radar target classification by micro-Doppler contributions

    Get PDF
    This thesis studies non-cooperative automatic radar target classification. Recent developments in silicon-germanium and monolithic microwave integrated circuit technologies allows to build cheap and powerful continuous wave radars. Availability of radars opens new applications in different areas. One of these applications is security. Radars could be used for surveillance of huge areas and detect unwanted moving objects. Determination of the type of the target is essential for such systems. Microwave radars use high frequencies that reflect from objects of millimetre size. The micro-Doppler signature of a target is a time-varying frequency modulated contribution that arose in radar backscattering and caused by the relative movement of separate parts of the target. The micro-Doppler phenomenon allows to classify non-rigid moving objects by analysing their signatures. This thesis is focused on designing of automatic target classification systems based on analysis of micro-Doppler signatures. Analysis of micro-Doppler radar signatures is usually performed by second-order statistics, i.e. common energy-based power spectra and spectrogram. However, the information about phase coupling content in backscattering is totally lost in these energy-based statistics. This useful phase coupling content can be extracted by higher-order spectral techniques. We show that this content is useful for radar target classification in terms of improved robustness to various corruption factors. A problem of unmanned aerial vehicle (UAV) classification using continuous wave radar is covered in the thesis. All steps of processing required to make a decision out of the raw radar data are considered. A novel feature extraction method is introduced. It is based on eigenpairs extracted from the correlation matrix of the signature. Different classes of UAVs are successfully separated in feature space by support vector machine. Within experiments or real radar data, achieved high classification accuracy proves the efficiency of the proposed solutions. Thesis also covers several applications of the automotive radar due to very high growth in technologies for intelligent vehicle radar systems. Such radars are already build-in in the vehicle and ready for new applications. We consider two novel applications. First application is a multi-sensor fusion of video camera and radar for more efficient vehicle-to-vehicle video transmission. Second application is a frequency band invariant pedestrian classification by an automotive radar. This system allows us to use the same signal processing hardware/software for different countries where regulations vary and radars with different operating frequency are required. We consider different radar applications: ground moving target classification, aerial target classification, unmanned aerial vehicles classification, pedestrian classification. The highest priority is given to verification of proposed methods on real radar data collected with frequencies equal to 9.5, 10, 16.8, 24 and 33 GHz

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    Pre-Trained Driving in Localized Surroundings with Semantic Radar Information and Machine Learning

    Get PDF
    Entlang der Signalverarbeitungskette von Radar Detektionen bis zur Fahrzeugansteuerung, diskutiert diese Arbeit eine semantischen Radar Segmentierung, einen darauf aufbauenden Radar SLAM, sowie eine im Verbund realisierte autonome Parkfunktion. Die Radarsegmentierung der (statischen) Umgebung wird durch ein Radar-spezifisches neuronales Netzwerk RadarNet erreicht. Diese Segmentierung ermöglicht die Entwicklung des semantischen Radar Graph-SLAM SERALOC. Auf der Grundlage der semantischen Radar SLAM Karte wird eine beispielhafte autonome ParkfunktionalitĂ€t in einem realen VersuchstrĂ€ger umgesetzt. Entlang eines aufgezeichneten Referenzfades parkt die Funktion ausschließlich auf Basis der Radar Wahrnehmung mit bisher unerreichter Positioniergenauigkeit. Im ersten Schritt wird ein Datensatz von 8.2 · 10^6 punktweise semantisch gelabelten Radarpunktwolken ĂŒber eine Strecke von 2507.35m generiert. Es sind keine vergleichbaren DatensĂ€tze dieser Annotationsebene und Radarspezifikation öffentlich verfĂŒgbar. Das ĂŒberwachte Training der semantischen Segmentierung RadarNet erreicht 28.97% mIoU auf sechs Klassen. Außerdem wird ein automatisiertes Radar-Labeling-Framework SeRaLF vorgestellt, welches das Radarlabeling multimodal mittels Referenzkameras und LiDAR unterstĂŒtzt. FĂŒr die kohĂ€rente Kartierung wird ein Radarsignal-Vorfilter auf der Grundlage einer Aktivierungskarte entworfen, welcher Rauschen und andere dynamische Mehrwegreflektionen unterdrĂŒckt. Ein speziell fĂŒr Radar angepasstes Graph-SLAM-Frontend mit Radar-Odometrie Kanten zwischen Teil-Karten und semantisch separater NDT Registrierung setzt die vorgefilterten semantischen Radarscans zu einer konsistenten metrischen Karte zusammen. Die Kartierungsgenauigkeit und die Datenassoziation werden somit erhöht und der erste semantische Radar Graph-SLAM fĂŒr beliebige statische Umgebungen realisiert. Integriert in ein reales Testfahrzeug, wird das Zusammenspiel der live RadarNet Segmentierung und des semantischen Radar Graph-SLAM anhand einer rein Radar-basierten autonomen ParkfunktionalitĂ€t evaluiert. Im Durchschnitt ĂŒber 42 autonome Parkmanöver (∅3.73 km/h) bei durchschnittlicher ManöverlĂ€nge von ∅172.75m wird ein Median absoluter Posenfehler von 0.235m und End-Posenfehler von 0.2443m erreicht, der vergleichbare Radar-Lokalisierungsergebnisse um ≈ 50% ĂŒbertrifft. Die Kartengenauigkeit von verĂ€nderlichen, neukartierten Orten ĂŒber eine Kartierungsdistanz von ∅165m ergibt eine ≈ 56%-ige Kartenkonsistenz bei einer Abweichung von ∅0.163m. FĂŒr das autonome Parken wurde ein gegebener Trajektorienplaner und Regleransatz verwendet

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    Study of processing techniques for radar non-cooperative target recognition.

    Get PDF
    Radar is a powerful tool for detecting and tracking airborne targets such as aircraft and missiles by day and night. Nowadays, it is seen as a genuine solution to the problem of target recognition. Recent events showed that cooperative means of identification such as the IFF transponders carried by most aircraft are not entirely reliable and can be switched off by terrorists. For this reason, it is important that target identification be obtained through measurements and reconnaissance based on non-cooperative techniques. In practice, recognition is achieved by comparing the electromagnetic sig nature of a target to a set of others previously collected and stored in a library. Such signatures generally represent the targets reflectivity as a function of space. A common representation is known as one-dimensional high-resolution range-profile (HRRP) and can be described as the projection of the reflectivity along the direction of propagation of the wave. When the measured signature matches a template, the target is identified. The main drawback of this technique is that signatures greatly vary with aspect-angle so that measurements must be made for many angles and in three dimensions. This implies a potentially large cost as large datasets must be created, stored and processed. Besides, any modification of the target structure may yield incorrect classification results. Instead, other processing techniques exist that rely on recent mathematical algorithms. These techniques can be used to extract target features directly from the radar data. Because of the direct relation with target geometry, these feature-based methods seem to be suitable candidates for reducing the need of large databases. However, their performances and their domains of validity are not known. This is especially true when it comes to real targets for at least three reasons. First, the performance of the methods varies with the signal-to-noise ratio. Second, man-made targets arc often more complex than just a set of independent theoretical point-like scatterers. Third, these targets are made up of a large number of scattering elements so that mathematical assumptions are not met. In conclusion, the physical correctness of the computational models are questionable. This thesis investigates the processing techniques that can be used for non-cooperative target recognition. It demonstrates that the scattering-centre extraction is not suitable for the model-based approach. In contrast, it shows that the technique can be used with the feature-based approach. In particular, it investigates the recognition when achieved directly in the z-domain and proposes a novel algorithm that exploits the information al ready in the database for identifying the signal features that corresponds to physical scatterers on the target. Experiments involving real targets show that the technique can enhance the classification performance and therefore could be used for non-cooperative target recognition
    • 

    corecore