9,310 research outputs found

    TIRSPEC : TIFR Near Infrared Spectrometer and Imager

    Full text link
    We describe the TIFR Near Infrared Spectrometer and Imager (TIRSPEC) designed and built in collaboration with M/s. Mauna Kea Infrared LLC, Hawaii, USA, now in operation on the side port of the 2-m Himalayan Chandra Telescope (HCT), Hanle (Ladakh), India at an altitude of 4500 meters above mean sea level. The TIRSPEC provides for various modes of operation which include photometry with broad and narrow band filters, spectrometry in single order mode with long slits of 300" length and different widths, with order sorter filters in the Y, J, H and K bands and a grism as the dispersing element as well as a cross dispersed mode to give a coverage of 1.0 to 2.5 microns at a resolving power R of ~1200. The TIRSPEC uses a Teledyne 1024 x 1024 pixel Hawaii-1 PACE array detector with a cutoff wavelength of 2.5 microns and on HCT, provides a field of view of 307" x 307" with a plate scale of 0.3"/pixel. The TIRSPEC was successfully commissioned in June 2013 and the subsequent characterization and astronomical observations are presented here. The TIRSPEC has been made available to the worldwide astronomical community for science observations from May 2014.Comment: 20 pages, 21 figures, 2 tables. Accepted for publication in Journal of Astronomical Instrumentatio

    Portable dynamic fundus instrument

    Get PDF
    A portable diagnostic image analysis instrument is disclosed for retinal funduscopy in which an eye fundus image is optically processed by a lens system to a charge coupled device (CCD) which produces recordable and viewable output data and is simultaneously viewable on an electronic view finder. The fundus image is processed to develop a representation of the vessel or vessels from the output data

    Empirical Analysis of Aerial Camera Filters for Shoreline Mapping

    Get PDF
    Accurate, up-to-date national shoreline is critical in defining the territorial limits of the Unites States, updating nautical charts, and managing coastal resources. The National Oceanic and Atmospheric Administration (NOAA) delineates the interpreted shoreline photogrammetrically using tide-coordinated stereo photography acquired with black-and-white infrared emulsion. In this paper, we present the results of a two-phased study aimed at quantifying the effect of camera filter selection on the interpreted shoreline when utilizing this method of shoreline mapping

    The First Release COSMOS Optical and Near-IR Data and Catalog

    Get PDF
    We present imaging data and photometry for the COSMOS survey in 15 photometric bands between 0.3um and 2.4um. These include data taken on the Subaru 8.3m telescope, the KPNO and CTIO 4m telescopes, and the CFHT 3.6m telescope. Special techniques are used to ensure that the relative photometric calibration is better than 1% across the field of view. The absolute photometric accuracy from standard star measurements is found to be 6%. The absolute calibration is corrected using galaxy spectra, providing colors accurate to 2% or better. Stellar and galaxy colors and counts agree well with the expected values. Finally, as the first step in the scientific analysis of these data we construct panchromatic number counts which confirm that both the geometry of the universe and the galaxy population are evolving.Comment: 19 pages, 13 figures, 14 tables, Accepted to ApJS for COSMOS speciall issu

    Frameless Representation and Manipulation of Image Data

    Get PDF
    Most image sensors mimic film, integrating light during an exposure interval and then reading the latent image as a complete frame. In contrast, frameless image capture attempts to construct a continuous waveform for each sensel describing how the Ev (exposure value required at each pixel) changes over time. This allows great flexibility in computationally extracting frames after exposure. An overview of how this could be accomplished was presented at EI2014, with an emphasis on frameless sensor technology. In contrast, the current work centers on deriving frameless data from sequences of conventionally captured frames

    Teat detection for an automated milking system

    Get PDF
    Application time when placing all four cups to the udder of a cow is the primary time constraint in high capacity group milking. A human labourer can manually apply four cups per animal as it passes on a rotary carousel in less than ten seconds. Existing automated milking machines typically have an average attachment time in excess of one minute. These systems apply the cups to each udder quadrant individually. To speed up the process it is proposed to attach all four cups simultaneously. To achieve this, the 3D position and orientation of each teat must be known in approximate real time. This thesis documents the analysis of a stereo-vision system for teat location and presents further developments of the system for detection of teat orientation. Test results demonstrate the suitability of stereovision for teat location but indicate that further refinement of the system is required to produce increased accuracy and precision. The additional functionality developed for the system to determine teat orientation has also been tested. Results show that while accurate determination of teat orientation is possible issues still exist with reliability and robustness
    corecore