163 research outputs found

    Application-agnostic Personal Storage for Linked Data

    Get PDF
    Personaalsete andmete ristkasutuse puudumine veebirakenduste vahel on viinud olukorrani, kus kasutajate identiteet ja andmed on hajutatud eri teenusepakkujate vahel. Sellest tulenevalt on suuremad teenusepakkujad, kel on rohkem teenuseid ja kasutajaid,\n\rvĂ€iksematega vĂ”rreldes eelisseisus kasutajate andmete pealt lisandvÀÀrtuse, sh analĂŒĂŒtika, pakkumise seisukohast. Lisaks on sellisel andmete eraldamisel negatiivne mĂ”ju lĂ”ppkasutajatele, kellel on vaja sarnaseid andmeid korduvalt esitada vĂ”i uuendada eri teenusepakkujate juures vaid selleks, et kasutada teenust maksimaalselt. KĂ€esolevas töös kirjeldatakse personaalse andmeruumi disaini ja realisatsiooni, mis lihtsustab andmete jagamist rakenduste vahel. Lahenduses kasutatakse AppScale\n\rrakendusemootori identiteedi infrastruktuuri, millele lisatakse personaalse andmeruumi teenus, millele ligipÀÀsu saab hallata kasutaja ise. Andmeruumi kasutatavus eri kasutuslugude jaoks tagatakse lĂ€bi linkandmete pĂ”himĂ”tete rakendamise.Recent advances in cloud-based applications and services have led to the continuous replacement of traditional desktop applications with corresponding SaaS solutions. These cloud applications are provided by different service providers, and typically manage identity and personal data, such as user’s contact details, of its users by its own means.\n\rAs a result, the identities and personal data of users have been spread over different applications and servers, each capturing a partial snapshot of user data at certain time moment. This, however, has made maintenance of personal data for service providers difficult and resource-consuming. Furthermore, such kind of data segregation has the overall negative effect on the user experience of end-users who need to repeatedly re-enter and maintain in parallel the same data to gain the maximum benefit out of their applications. Finally, from an integration point of view – sealing of user data has led to the adoption of point-to-point integration models between service providers, which limits the evolution of application ecosystems compared to the models with content aggregators and brokers.\n\rIn this thesis, we will develop an application-agnostic personal storage, which allows sharing user data among applications. This will be achieved by extending AppScale app store identity infrastructure with a personal data storage, which can be easily accessed by any application in the cloud and it will be under the control of a user. Usability of data is leveraged via adoption of linked data principles

    Challenges and Opportunities in Applying Semantics to Improve Access Control in the Field of Internet of Things

    Get PDF
    The increased number of IoT devices results in continuously generated massive amounts of raw data. Parts of this data are private and highly sensitive as they reflect owner’s behavior, obligations, habits, and preferences. In this paper, we point out that flexible and comprehensive access control policies are “a must” in the IoT domain. The Semantic Web technologies can address many of the challenges that the IoT access control is facing with today. Therefore, we analyze the current state of the art in this area and identify the challenges and opportunities for improved access control in a semantically enriched IoT environment. Applying semantics to IoT access control opens a lot of opportunities, such as semantic inference and reasoning, easy data sharing, data trading, new approaches to authentication, security policies based on a natural language and enhances the interoperability using a common ontology

    A proof-of-concept for semantically interoperable federation of IoT experimentation facilities

    Get PDF
    The Internet-of-Things (IoT) is unanimously identified as one of the main pillars of future smart scenarios. The potential of IoT technologies and deployments has been already demonstrated in a number of different application areas, including transport, energy, safety and healthcare. However, despite the growing number of IoT deployments, the majority of IoT applications tend to be self-contained, thereby forming application silos. A lightweight data centric integration and combination of these silos presents several challenges that still need to be addressed. Indeed, the ability to combine and synthesize data streams and services from diverse IoT platforms and testbeds, holds the promise to increase the potentiality of smart applications in terms of size, scope and targeted business context. In this article, a proof-of-concept implementation that federates two different IoT experimentation facilities by means of semantic-based technologies will be described. The specification and design of the implemented system and information models will be described together with the practical details of the developments carried out and its integration with the existing IoT platforms supporting the aforementioned testbeds. Overall, the system described in this paper demonstrates that it is possible to open new horizons in the development of IoT applications and experiments at a global scale, that transcend the (silo) boundaries of individual deployments, based on the semantic interconnection and interoperability of diverse IoT platforms and testbeds.This work is partially funded by the European projectzFederated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT) from the European Union’s Horizon 2020 Programme with the Grant Agreement No. CNECT-ICT-643943. The authors would also like to thank the FIESTA-IoT consortium for the fruitful discussions

    Enabling discoverable trusted services for highly dynamic decentralized workflows

    Get PDF
    Fifth generation (5G) mobile networks will revolutionize edge-based computing by providing fast and reliable network capabilities to remote sensors, devices and microservices. This heralds new opportunities for researchers, allowing remote instrumentation and analytic capabilities to be as accessible as local resources. The increased availability of remote data and services presents new opportunities for collaboration, yet introduces challenges for workflow orchestration, which will need to adapt to consider an increased choice of available services, including those from trusted partners and the wider community. In this paper we outline a workflow approach that provides decentralized discovery and orchestration of verifiably trustable services in support of multi-party operations. We base this work on the adoption of standardised data models and protocols emerging from hypermedia research, which has demonstrated success in using combinations of Linked Data, Web of Things (WoT) and semantic technologies to provide mechanisms for autonomous goal-directed agents to discover, execute and reuse new heterogeneous resources and behaviours in large-scale, dynamic environments. We adopt Verifiable Credentials (VCs) to securely share information amongst peers based on prior service usage in a cryptographically secure and tamperproof way, providing a trust-based framework for ratifying service qualities. Collating these new service description channels and integrating with existing decentralized workflow research based on vector symbolic architecture (VSA) provides an enhanced semantic search space for efficient and trusted service discovery that will be necessary for 5G edge-computing environments

    ETSI SmartM2M Technical Report 103715; Study for oneM2M; Discovery and Query solutions analysis & selection

    Get PDF
    The oneM2M system has implemented basic native discovery capabilities. In order to enhance the semantic capabilities of the oneM2M architecture by providing solid contributions to the oneM2M standards, four Technical Reports have been developed. Each of them is the outcome of a special study phase: requirements, study, simulation and standardization phase. The present document covers the second phase and provides the basis for the other documents. It identifies, defines and analyses relevant approaches with respect to the use cases and requirements developed in ETSI TR 103 714 The most appropriate one will be selected

    Linked Research on the Decentralised Web

    Get PDF
    This thesis is about research communication in the context of the Web. I analyse literature which reveals how researchers are making use of Web technologies for knowledge dissemination, as well as how individuals are disempowered by the centralisation of certain systems, such as academic publishing platforms and social media. I share my findings on the feasibility of a decentralised and interoperable information space where researchers can control their identifiers whilst fulfilling the core functions of scientific communication: registration, awareness, certification, and archiving. The contemporary research communication paradigm operates under a diverse set of sociotechnical constraints, which influence how units of research information and personal data are created and exchanged. Economic forces and non-interoperable system designs mean that researcher identifiers and research contributions are largely shaped and controlled by third-party entities; participation requires the use of proprietary systems. From a technical standpoint, this thesis takes a deep look at semantic structure of research artifacts, and how they can be stored, linked and shared in a way that is controlled by individual researchers, or delegated to trusted parties. Further, I find that the ecosystem was lacking a technical Web standard able to fulfill the awareness function of research communication. Thus, I contribute a new communication protocol, Linked Data Notifications (published as a W3C Recommendation) which enables decentralised notifications on the Web, and provide implementations pertinent to the academic publishing use case. So far we have seen decentralised notifications applied in research dissemination or collaboration scenarios, as well as for archival activities and scientific experiments. Another core contribution of this work is a Web standards-based implementation of a clientside tool, dokieli, for decentralised article publishing, annotations and social interactions. dokieli can be used to fulfill the scholarly functions of registration, awareness, certification, and archiving, all in a decentralised manner, returning control of research contributions and discourse to individual researchers. The overarching conclusion of the thesis is that Web technologies can be used to create a fully functioning ecosystem for research communication. Using the framework of Web architecture, and loosely coupling the four functions, an accessible and inclusive ecosystem can be realised whereby users are able to use and switch between interoperable applications without interfering with existing data. Technical solutions alone do not suffice of course, so this thesis also takes into account the need for a change in the traditional mode of thinking amongst scholars, and presents the Linked Research initiative as an ongoing effort toward researcher autonomy in a social system, and universal access to human- and machine-readable information. Outcomes of this outreach work so far include an increase in the number of individuals self-hosting their research artifacts, workshops publishing accessible proceedings on the Web, in-the-wild experiments with open and public peer-review, and semantic graphs of contributions to conference proceedings and journals (the Linked Open Research Cloud). Some of the future challenges include: addressing the social implications of decentralised Web publishing, as well as the design of ethically grounded interoperable mechanisms; cultivating privacy aware information spaces; personal or community-controlled on-demand archiving services; and further design of decentralised applications that are aware of the core functions of scientific communication

    Designing and Maintaining an EIS Database: Lessons Learned in Developing Library-based Digital Repositories

    Get PDF
    The Columbia University Libraries/Information Services (CUL/IS) have extensive experience building and maintaining systems for the discovery, access, and preservation of digital objects. This presentation discusses the lessons learned from Libraries projects and the current technologies in use for Libraries digital collections

    Ubiquitous Semantic Applications

    Get PDF
    As Semantic Web technology evolves many open areas emerge, which attract more research focus. In addition to quickly expanding Linked Open Data (LOD) cloud, various embeddable metadata formats (e.g. RDFa, microdata) are becoming more common. Corporations are already using existing Web of Data to create new technologies that were not possible before. Watson by IBM an artificial intelligence computer system capable of answering questions posed in natural language can be a great example. On the other hand, ubiquitous devices that have a large number of sensors and integrated devices are becoming increasingly powerful and fully featured computing platforms in our pockets and homes. For many people smartphones and tablet computers have already replaced traditional computers as their window to the Internet and to the Web. Hence, the management and presentation of information that is useful to a user is a main requirement for today’s smartphones. And it is becoming extremely important to provide access to the emerging Web of Data from the ubiquitous devices. In this thesis we investigate how ubiquitous devices can interact with the Semantic Web. We discovered that there are five different approaches for bringing the Semantic Web to ubiquitous devices. We have outlined and discussed in detail existing challenges in implementing this approaches in section 1.2. We have described a conceptual framework for ubiquitous semantic applications in chapter 4. We distinguish three client approaches for accessing semantic data using ubiquitous devices depending on how much of the semantic data processing is performed on the device itself (thin, hybrid and fat clients). These are discussed in chapter 5 along with the solution to every related challenge. Two provider approaches (fat and hybrid) can be distinguished for exposing data from ubiquitous devices on the Semantic Web. These are discussed in chapter 6 along with the solution to every related challenge. We conclude our work with a discussion on each of the contributions of the thesis and propose future work for each of the discussed approach in chapter 7

    A widget library for creating policy-aware semantic Web applications

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 79-81).In order to truly reap the benefits of the Semantic Web, there must be adequate tools for writing Web applications that aggregate, view, and edit the widely varying data the Semantic Web makes available. As a step toward this goal, I introduce a Javascript widget library for creating Web applications that can both read from and write to the Semantic Web. In addition to providing widgets that perform editing operations, access control rules for user-generated content are supported using FOAF+SSL, a decentralized authentication technique, allowing for users to independently manage the restrictions placed on their data. I demonstrate this functionality with two examples: an aggregator application for exploring information about musicians from multiple data stores, and a universal annotation widget that allows users to make public and private comments about any resource on the Semantic Web.by James Dylan Hollenbach.M.Eng
    • 

    corecore