19 research outputs found

    Towards a Swiss National Research Infrastructure

    Full text link
    In this position paper we describe the current status and plans for a Swiss National Research Infrastructure. Swiss academic and research institutions are very autonomous. While being loosely coupled, they do not rely on any centralized management entities. Therefore, a coordinated national research infrastructure can only be established by federating the various resources available locally at the individual institutions. The Swiss Multi-Science Computing Grid and the Swiss Academic Compute Cloud projects serve already a large number of diverse user communities. These projects also allow us to test the operational setup of such a heterogeneous federated infrastructure

    A framework for orchestrating secure and dynamic access of IoT services in multi-cloud environments

    Get PDF
    IoT devices have complex requirements but their limitations in terms of storage, network, computing, data analytics, scalability and big data management require it to be used it with a technology like cloud computing. IoT backend with cloud computing can present new ways to offer services that are massively scalable, can be dynamically configured, and delivered on demand with largescale infrastructure resources. However, a single cloud infrastructure might be unable to deal with the increasing demand of cloud services in which hundreds of users might be accessing cloud resources, leading to a big data problem and the need for efficient frameworks to handle a large number of user requests for IoT services. These challenges require new functional elements and provisioning schemes. To this end, we propose the usage of multi-clouds with IoT which can optimize the user requirements by allowing them to choose best IoT services from many services hosted in various cloud platforms and provide them with more infrastructure and platform resources to meet their requirements. This paper presents a novel framework for dynamic and secure IoT services access across multi-clouds using cloud on-demand model. To facilitate multi-cloud collaboration, novel protocols are designed and implemented on cloud platforms. The various stages involved in the framework for allowing users access to IoT services in multi-clouds are service matchmaking (i.e. to choose the best service matching user requirements), authentication (i.e. a lightweight mechanism to authenticate users at runtime before granting them service access), and SLA management (including SLA negotiation, enforcement and monitoring). SLA management offers benefits like negotiating required service parameters, enforcing mechanisms to ensure that service execution in the external cloud is according to the agreed SLAs and monitoring to verify that the cloud provider complies with those SLAs. The detailed system design to establish secure multi-cloud collaboration has been presented. Moreover, the designed protocols are empirically implemented on two different clouds including OpenStack and Amazon AWS. Experiments indicate that proposed system is scalable, authentication protocols result only in a limited overhead compared to standard authentication protocols, and any SLA violation by a cloud provider could be recorded and reported back to the user.N/

    Big Data and Large-scale Data Analytics: Efficiency of Sustainable Scalability and Security of Centralized Clouds and Edge Deployment Architectures

    Get PDF
    One of the significant shifts of the next-generation computing technologies will certainly be in the development of Big Data (BD) deployment architectures. Apache Hadoop, the BD landmark, evolved as a widely deployed BD operating system. Its new features include federation structure and many associated frameworks, which provide Hadoop 3.x with the maturity to serve different markets. This dissertation addresses two leading issues involved in exploiting BD and large-scale data analytics realm using the Hadoop platform. Namely, (i)Scalability that directly affects the system performance and overall throughput using portable Docker containers. (ii) Security that spread the adoption of data protection practices among practitioners using access controls. An Enhanced Mapreduce Environment (EME), OPportunistic and Elastic Resource Allocation (OPERA) scheduler, BD Federation Access Broker (BDFAB), and a Secure Intelligent Transportation System (SITS) of multi-tiers architecture for data streaming to the cloud computing are the main contribution of this thesis study

    Multi-cloud Security Mechanisms for Smart Environments

    Get PDF
    Achieving transparency and security awareness in cloud environments is a challenging task. It is even more challenging in multi-cloud environments (where application components are distributed across multiple clouds) owing to its complexity. This complexity open doors to the introduction of threats and makes it difficult to know how the application components are performing and when remedial actions should be taken in the case of an anomaly. Nowadays, many cloud customers are becoming more interested in having a knowledge of their application status, particularly as it relates to the security of the application owing to growing cloud security concerns, which is multi-faceted in multi-cloud environments. This has necessitated the need for adequate visibility and security awareness in multi-cloud environments. However, this is threatened by non-standardization and diverse CSP platforms. This thesis presents a security evaluation framework for multi-cloud applications. It aims to facilitate transparency and security awareness in multi-cloud applications through adequate evaluation of the application components deployed across different clouds as well as the entire multi-cloud application. This will ensure that the health, internal events and performance of the multi-cloud application can be known. As a result of this, the security status and information about the multi-cloud application can be made available to application owners, cloud service providers and application users. This will increase cloud customers’ trust in using multi-clouds and ensure verification of the security status of multi-cloud components at any time desired. The security evaluation framework is based on threat identification and risk analysis, application modelling with ontology, selection of metrics and security controls, application security monitoring, security measurement, decision making and security status visualization
    corecore