1,378 research outputs found

    Authoring of Adaptive and Adaptable Hypermedia

    Get PDF
    Authoring of Adaptive Hypermedia has been long considered as secondary to adaptive hypermedia delivery. However, authoring is not trivial at all. There exist some approaches to help authors to build adaptive-hypermedia-based systems, yet there is a strong need for high-level approaches, formalisms and tools that support and facilitate the description of reusable adaptive websites. Only recently have we noticed a shift in interest, as it became clearer that the implementation-oriented approach would forever keep adaptive hypermedia away from the ‘layman’ author. The creator of adaptive hypermedia cannot be expected to know all facets of this process, but can be reasonably trusted to be an expert in one of them. It is therefore necessary to research and establish the components of an adaptive hypermedia system from an authoring perspective, catering for the different author personas that are required. This type of research has proven to lead to a modular view on the adaptive hypermedia

    Supporting Adaptive and Adaptable Hypermedia Presentation Semantics

    Get PDF
    Having the content of a presentation adapt to the needs, resources and prior activities of a user can be an important benefit of electronic documents. While part of this adaptation is related to the encodings of individual data streams, much of the adaptation can/should be guided by the semantics in and among the objects of the presentation. The semantics involved in having hypermedia presentations adapt can be divided between adaptive hypermedia, which adapts autonomously, and adaptable hypermedia, which requires presentationexternal intervention to be adapted. Understanding adaptive and adaptable hypermedia and the differences between them helps in determining the best manner with which to have a particular hypermedia implementation adapt to the varying circumstances of its presentation. The choice of which type of semantics to represent can affect speed of the database management system processing them. This paper reflects on research and implementation approaches toward both adaptive and adaptable hypermedia and how they apply to specifying the semantics involved in hypermedia authoring and processing. We look at adaptive approaches by considering CMIF and SMIL. The adaptable approaches are represented by the SGML-related collection of formats and the Standard Reference Model (SRM) for IPMS are also reviewed. Based on our experience with both adaptive and adaptable hypermedia, we offer recommendations on how each approach can be supported at the data storage level

    A spiral model for adding automatic, adaptive authoring to adaptive hypermedia

    Get PDF
    At present a large amount of research exists into the design and implementation of adaptive systems. However, not many target the complex task of authoring in such systems, or their evaluation. In order to tackle these problems, we have looked into the causes of the complexity. Manual annotation has proven to be a bottleneck for authoring of adaptive hypermedia. One such solution is the reuse of automatically generated metadata. In our previous work we have proposed the integration of the generic Adaptive Hypermedia authoring environment, MOT ( My Online Teacher), and a semantic desktop environment, indexed by Beagle++. A prototype, Sesame2MOT Enricher v1, was built based upon this integration approach and evaluated. After the initial evaluations, a web-based prototype was built (web-based Sesame2MOT Enricher v2 application) and integrated in MOT v2, conforming with the findings of the first set of evaluations. This new prototype underwent another evaluation. This paper thus does a synthesis of the approach in general, the initial prototype, with its first evaluations, the improved prototype and the first results from the most recent evaluation round, following the next implementation cycle of the spiral model [Boehm, 88]

    Third international workshop on Authoring of adaptive and adaptable educational hypermedia (A3EH), Amsterdam, 18-22 July, 2005

    Get PDF
    The A3EH follows a successful series of workshops on Adaptive and Adaptable Educational Hypermedia. This workshop focuses on models, design and authoring of AEH, on assessment of AEH, conversion between AEH and evaluation of AEH. The workshop has paper presentations, poster session and panel discussions

    Defining adaptation in a generic multi layer model : CAM: the GRAPPLE conceptual adaptation model

    Get PDF
    Authoring of Adaptive Hypermedia is a difficult and time consuming task. Reference models like LAOS and AHAM separate adaptation and content in different layers. Systems like AHA! offer graphical tools based on these models to allow authors to define adaptation without knowing any adaptation language. The adaptation that can be defined using such tools is still limited. Authoring systems like MOT are more flexible, but usability of adaptation specification is low. This paper proposes a more generic model which allows the adaptation to be defined in an arbitrary number of layers, where adaptation is expressed in terms of relationships between concepts. This model allows the creation of more powerful yet easier to use graphical authoring tools. This paper presents the structure of the Conceptual Adaptation Models used in adaptive applications created within the GRAPPLE adaptive learning environment, and their representation in a graphical authoring tool

    Defining adaptation in a generic multi layer model : CAM: the GRAPPLE conceptual adaptation model

    Get PDF
    Authoring of Adaptive Hypermedia is a difficult and time consuming task. Reference models like LAOS and AHAM separate adaptation and content in different layers. Systems like AHA! offer graphical tools based on these models to allow authors to define adaptation without knowing any adaptation language. The adaptation that can be defined using such tools is still limited. Authoring systems like MOT are more flexible, but usability of adaptation specification is low. This paper proposes a more generic model which allows the adaptation to be defined in an arbitrary number of layers, where adaptation is expressed in terms of relationships between concepts. This model allows the creation of more powerful yet easier to use graphical authoring tools. This paper presents the structure of the Conceptual Adaptation Models used in adaptive applications created within the GRAPPLE adaptive learning environment, and their representation in a graphical authoring tool

    Hypermedia Learning Objects System - On the Way to a Semantic Educational Web

    Full text link
    While eLearning systems become more and more popular in daily education, available applications lack opportunities to structure, annotate and manage their contents in a high-level fashion. General efforts to improve these deficits are taken by initiatives to define rich meta data sets and a semanticWeb layer. In the present paper we introduce Hylos, an online learning system. Hylos is based on a cellular eLearning Object (ELO) information model encapsulating meta data conforming to the LOM standard. Content management is provisioned on this semantic meta data level and allows for variable, dynamically adaptable access structures. Context aware multifunctional links permit a systematic navigation depending on the learners and didactic needs, thereby exploring the capabilities of the semantic web. Hylos is built upon the more general Multimedia Information Repository (MIR) and the MIR adaptive context linking environment (MIRaCLE), its linking extension. MIR is an open system supporting the standards XML, Corba and JNDI. Hylos benefits from manageable information structures, sophisticated access logic and high-level authoring tools like the ELO editor responsible for the semi-manual creation of meta data and WYSIWYG like content editing.Comment: 11 pages, 7 figure

    Continuous use of authoring for adaptive educational hypermedia : a long-term case study

    Get PDF
    Adaptive educational hypermedia allows lessons to be personalized according to the needs of the learner. However, to achieve this, content must be split into stand-alone fragments that can be processed by a course personalization engine. Authoring content for this process is still a difficult activity, and it is essential for the popularization of adaptive educational hypermedia that authoring is simplified, so that the various stakeholders in the educational process, students, teachers, administrators, etc. can easily work with such systems. Thus, real-world testing with these stakeholders is essential. In this paper we describe recent extensions and improvements we have implemented in the My Online Teacher MOT3.0 adaptation authoring tool set, based on an initial set of short-term evaluations, and then focus on describing a long-term usage and assessment of the system

    Design of the CAM model and authoring tool

    Get PDF
    Students benefit from personalised attention; however, often teachers are unable to provide this. An Adaptive Hypermedia (AH) system can offer a richer learning experience in an educational environment, by giving personalised attention to students. On-line courses are becoming increasingly popular by means of Learning Management Systems (LSM). The aim of the GRAPPLE project is to integrate an AH with major LMS, to provide an environment that delivers personalised courses in a LMS interface. However, designing an AH is a much more complex and time-consuming task, than creating a course in a LMS. Several models and systems were developed previously, but the (re)-usability by educational authors of the adaptation remains limited. To simplify adaptive behaviour authoring for an educational author, a visual environment was selected as being most intuitive. This paper describes a reference model for authoring in a visual way and introduces an authoring tool based upon this model

    Transforming a linear module into an adaptive one : tackling the challenge

    Get PDF
    Every learner is fundamentally different. However, few courses are delivered in a way that is tailored to the specific needs of each student. Delivery systems for adaptive educational hypermedia have been extensively researched and found promising. Still, authoring of adaptive courses remains a challenge. In prior research, we have built an adaptive hypermedia authoring system, MOT3.0. The main focus was on enhancing the type of functionality that allows the non-technical author, to efficiently and effectively use such a tool. Here we show how teachers can start from existing course material and transform it into an adaptive course, catering for various learners. We also show how this apparent simplicity still allows for building of flexible and complex adaptation, and describe an evaluation with course authors
    corecore