484 research outputs found

    Aeronautical engineering: A continuing bibliography, supplement 122

    Get PDF
    This bibliography lists 303 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1980

    Towards Scalable Network Traffic Measurement With Sketches

    Get PDF
    Driven by the ever-increasing data volume through the Internet, the per-port speed of network devices reached 400 Gbps, and high-end switches are capable of processing 25.6 Tbps of network traffic. To improve the efficiency and security of the network, network traffic measurement becomes more important than ever. For fast and accurate traffic measurement, managing an accurate working set of active flows (WSAF) at line rates is a key challenge. WSAF is usually located in high-speed but expensive memories, such as TCAM or SRAM, and thus their capacity is quite limited. To scale up the per-flow measurement, we pursue three thrusts. In the first thrust, we propose to use In-DRAM WSAF and put a compact data structure (i.e., sketch) called FlowRegulator before WSAF to compensate for DRAM\u27s slow access time. Per our results, FlowRegulator can substantially reduce massive influxes to WSAF without compromising measurement accuracy. In the second thrust, we integrate our sketch into a network system and propose an SDN-based WLAN monitoring and management framework called RFlow+, which can overcome the limitations of existing traffic measurement solutions (e.g., OpenFlow and sFlow), such as a limited view, incomplete flow statistics, and poor trade-off between measurement accuracy and CPU/network overheads. In the third thrust, we introduce a novel sampling scheme to deal with the poor trade-off that is provided by the standard simple random sampling (SRS). Even though SRS has been widely used in practice because of its simplicity, it provides non-uniform sampling rates for different flows, because it samples packets over an aggregated data flow. Starting with a simple idea that independent per-flow packet sampling provides the most accurate estimation of each flow, we introduce a new concept of per-flow systematic sampling, aiming to provide the same sampling rate across all flows. In addition, we provide a concrete sampling method called SketchFlow, which approximates the idea of the per-flow systematic sampling using a sketch saturation event

    System Identification of Offshore Platforms

    Get PDF

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Aeronautical Engineering. A continuing bibliography, supplement 115

    Get PDF
    This bibliography lists 273 reports, articles, and other documents introduced into the NASA scientific and technical information system in October 1979

    Developments in Informal Multi-Criteria Calibration and Uncertainty Estimation in Hydrological Modelling

    Get PDF
    Hydrologic modelling has benefited from significant developments over the past two decades, which has led to the development of distributed hydrologic models. Parameter adjustment, or model calibration, is extremely important in the application of these hydrologic models. Multi-criteria calibration schemes and several formal and informal predictive uncertainty estimation methodologies are among the approaches to improve the results of model calibration. Moreover, literature indicates a general agreement between formal and informal approaches with respect to the predictive uncertainty estimation in single-criterion calibration cases. This research extends the comparison between these techniques to multi-criteria calibration cases, and furthermore, proposes new ideas to improve informal multi-criteria calibration and uncertainty estimation in hydrological modelling. GLUE is selected as a candidate informal methodology due to its extreme popularity among hydrological modellers, i.e., based on the number of applications in the past two decades. However, it is hypothesized that improvements can be applied to other certain types of informal uncertainty estimation as well. The first contribution of this research is an in-depth comparison between GLUE and Bayesian inference in the multi-criteria context. Such a comparison is novel because past literature has focused on comparisons for only single criterion calibration studies. Unlike the previous research, the results show that there can be considerable differences in hydrograph prediction intervals generated by traditional GLUE and Bayesian inference in multi-criteria cases. Bayesian inference performs more satisfactorily than GLUE along most of the comparative measures. However, results also reveal that a standard Bayesian formulation (i.e., aggregating all uncertainties into a single additive error term) may not demonstrate perfect reliability in the prediction mode. Furthermore, in cases with a limited computational budget, non-converged MCMC sampling proves to be an appropriate alternative to GLUE since it is reasonably consistent with a fully-converged Bayesian approach, even though the fully-converged MCMC requires a substantially larger number of model evaluations. Another contribution of this research is to improve the uncertainty bounds of the traditional GLUE approach by the exploration of alternative behavioural solution identification strategies. Multiple behavioural solution identification strategies from the literature are evaluated, new objective strategies are developed, and multi-criteria decision-making concepts are utilized to select the best strategy. The results indicate that the subjectivity involved in behavioural solution identification strategies impacts the uncertainty of model outcome. More importantly, a robust implementation of GLUE proves to require comparing multiple behavioural solution identification strategies and choosing the best one based on the modeller’s priorities. Moreover, it appears that the proposed objective strategies are among the best options in most of the case studies investigated in this research. Thus, it is recommended that these new strategies be considered among the set of behavioural solution identification strategies in future GLUE applications. Lastly, this research also develops a full optimization-based calibration framework that is capable of utilizing both standard goodness-of-fit measures and many hydrological signatures simultaneously. These signatures can improve the calibration results by constraining the model outcome hydrologically. However, the literature shows that to simultaneously apply a large number of hydrological signatures in model calibration is challenging. Therefore, the proposed research adopts optimization concepts to accommodate many criteria (including 13 hydrologic signature-based objectives and two standard statistical goodness-of-fit measures). In the proposed framework, hydrological consistency is quantified (based on a set of signature-based measures and their desired level of acceptability) and utilized as a criterion in multiple calibration formulations. The results show that these formulations perform better than the traditional approaches to locate hydrologically consistent parameter sets in the search space. Different hydrologic models, most of which are conceptual rainfall-runoff models, are used throughout the thesis to evaluate the performance of the developed strategies. However, the developments explored in this research are typically simulation-model-independent and can be applied to calibration and uncertainty estimation of any environmental model. However, further testing of these methods is warranted for more computationally intensive simulation models, such as fully distributed hydrologic models

    Intelligent and Secure Underwater Acoustic Communication Networks

    Get PDF
    Underwater acoustic (UWA) communication networks are promising techniques for medium- to long-range wireless information transfer in aquatic applications. The harsh and dynamic water environment poses grand challenges to the design of UWA networks. This dissertation leverages the advances in machine learning and signal processing to develop intelligent and secure UWA communication networks. Three research topics are studied: 1) reinforcement learning (RL)-based adaptive transmission in UWA channels; 2) reinforcement learning-based adaptive trajectory planning for autonomous underwater vehicles (AUVs) in under-ice environments; 3) signal alignment to secure underwater coordinated multipoint (CoMP) transmissions. First, a RL-based algorithm is developed for adaptive transmission in long-term operating UWA point-to-point communication systems. The UWA channel dynamics are learned and exploited to trade off energy consumption with information delivery latency. The adaptive transmission problem is formulated as a partially observable Markov decision process (POMDP) which is solved by a Monte Carlo sampling-based approach, and an expectation-maximization-type of algorithm is developed to recursively estimate the channel model parameters. The experimental data processing reveals that the proposed algorithm achieves a good balance between energy efficiency and information delivery latency. Secondly, an online learning-based algorithm is developed for adaptive trajectory planning of multiple AUVs in under-ice environments to reconstruct a water parameter field of interest. The field knowledge is learned online to guide the trajectories of AUVs for collection of informative water parameter samples in the near future. The trajectory planning problem is formulated as a Markov decision process (MDP) which is solved by an actor-critic algorithm, where the field knowledge is estimated online using the Gaussian process regression. The simulation results show that the proposed algorithm achieves the performance close to a benchmark method that assumes perfect field knowledge. Thirdly, the dissertation presents a signal alignment method to secure underwater CoMP transmissions of geographically distributed antenna elements (DAEs) against eavesdropping. Exploiting the low sound speed in water and the spatial diversity of DAEs, the signal alignment method is developed such that useful signals will collide at the eavesdropper while stay collision-free at the legitimate user. The signal alignment mechanism is formulated as a mixed integer and nonlinear optimization problem which is solved through a combination of the simulated annealing method and the linear programming. Taking the orthogonal frequency-division multiplexing (OFDM) as the modulation technique, simulation and emulated experimental results demonstrate that the proposed method significantly degrades the eavesdropper\u27s interception capability

    Dating Victorians: an experimental approach to stylochronometry

    Get PDF
    A thesis submitted for the degree of Doctor of Philosophy ofthe University of LutonThe writing style of a number of authors writing in English was empirically investigated for the purpose of detecting stylistic patterns in relation to advancing age. The aim was to identify the type of stylistic markers among lexical, syntactical, phonemic, entropic, character-based, and content ones that would be most able to discriminate between early, middle, and late works of the selected authors, and the best classification or prediction algorithm most suited for this task. Two pilot studies were initially conducted. The first one concentrated on Christina Georgina Rossetti and Edgar Allan Poe from whom personal letters and poetry were selected as the genres of study, along with a limited selection of variables. Results suggested that authors and genre vary inconsistently. The second pilot study was based on Shakespeare's plays using a wider selection of variables to assess their discriminating power in relation to a past study. It was observed that the selected variables were of satisfactory predictive power, hence judged suitable for the task. Subsequently, four experiments were conducted using the variables tested in the second pilot study and personal correspondence and poetry from two additional authors, Edna St Vincent Millay and William Butler Yeats. Stepwise multiple linear regression and regression trees were selected to deal with the first two prediction experiments, and ordinal logistic regression and artificial neural networks for two classification experiments. The first experiment revealed inconsistency in accuracy of prediction and total number of variables in the final models affected by differences in authorship and genre. The second experiment revealed inconsistencies for the same factors in terms of accuracy only. The third experiment showed total number of variables in the model and error in the final model to be affected in various degrees by authorship, genre, different variable types and order in which the variables had been calculated. The last experiment had all measurements affected by the four factors. Examination of whether differences in method within each task play an important part revealed significant influences of method, authorship, and genre for the prediction problems, whereas all factors including method and various interactions dominated in the classification problems. Given the current data and methods used, as well as the results obtained, generalizable conclusions for the wider author population have been avoided

    Aeronautical Engineering: A special bibliography with indexes, supplement 48

    Get PDF
    This special bibliography lists 291 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1974
    • …
    corecore