12,401 research outputs found

    Defending against Sybil Devices in Crowdsourced Mapping Services

    Full text link
    Real-time crowdsourced maps such as Waze provide timely updates on traffic, congestion, accidents and points of interest. In this paper, we demonstrate how lack of strong location authentication allows creation of software-based {\em Sybil devices} that expose crowdsourced map systems to a variety of security and privacy attacks. Our experiments show that a single Sybil device with limited resources can cause havoc on Waze, reporting false congestion and accidents and automatically rerouting user traffic. More importantly, we describe techniques to generate Sybil devices at scale, creating armies of virtual vehicles capable of remotely tracking precise movements for large user populations while avoiding detection. We propose a new approach to defend against Sybil devices based on {\em co-location edges}, authenticated records that attest to the one-time physical co-location of a pair of devices. Over time, co-location edges combine to form large {\em proximity graphs} that attest to physical interactions between devices, allowing scalable detection of virtual vehicles. We demonstrate the efficacy of this approach using large-scale simulations, and discuss how they can be used to dramatically reduce the impact of attacks against crowdsourced mapping services.Comment: Measure and integratio

    Development of grid frameworks for clinical trials and epidemiological studies

    Get PDF
    E-Health initiatives such as electronic clinical trials and epidemiological studies require access to and usage of a range of both clinical and other data sets. Such data sets are typically only available over many heterogeneous domains where a plethora of often legacy based or in-house/bespoke IT solutions exist. Considerable efforts and investments are being made across the UK to upgrade the IT infrastructures across the National Health Service (NHS) such as the National Program for IT in the NHS (NPFIT) [1]. However, it is the case that currently independent and largely non-interoperable IT solutions exist across hospitals, trusts, disease registries and GP practices – this includes security as well as more general compute and data infrastructures. Grid technology allows issues of distribution and heterogeneity to be overcome, however the clinical trials domain places special demands on security and data which hitherto the Grid community have not satisfactorily addressed. These challenges are often common across many studies and trials hence the development of a re-usable framework for creation and subsequent management of such infrastructures is highly desirable. In this paper we present the challenges in developing such a framework and outline initial scenarios and prototypes developed within the MRC funded Virtual Organisations for Trials and Epidemiological Studies (VOTES) project [2]

    The Meeting of Acquaintances: A Cost-efficient Authentication Scheme for Light-weight Objects with Transient Trust Level and Plurality Approach

    Full text link
    Wireless sensor networks consist of a large number of distributed sensor nodes so that potential risks are becoming more and more unpredictable. The new entrants pose the potential risks when they move into the secure zone. To build a door wall that provides safe and secured for the system, many recent research works applied the initial authentication process. However, the majority of the previous articles only focused on the Central Authority (CA) since this leads to an increase in the computation cost and energy consumption for the specific cases on the Internet of Things (IoT). Hence, in this article, we will lessen the importance of these third parties through proposing an enhanced authentication mechanism that includes key management and evaluation based on the past interactions to assist the objects joining a secured area without any nearby CA. We refer to a mobility dataset from CRAWDAD collected at the University Politehnica of Bucharest and rebuild into a new random dataset larger than the old one. The new one is an input for a simulated authenticating algorithm to observe the communication cost and resource usage of devices. Our proposal helps the authenticating flexible, being strict with unknown devices into the secured zone. The threshold of maximum friends can modify based on the optimization of the symmetric-key algorithm to diminish communication costs (our experimental results compare to previous schemes less than 2000 bits) and raise flexibility in resource-constrained environments.Comment: 27 page

    PROVIDE: hiding from automated network scans with proofs of identity

    Full text link
    Network scanners are a valuable tool for researchers and administrators, however they are also used by malicious actors to identify vulnerable hosts on a network. Upon the disclosure of a security vulnerability, scans are launched within hours. These opportunistic attackers enumerate blocks of IP addresses in hope of discovering an exploitable host. Fortunately, defensive measures such as port knocking protocols (PKPs) allow a service to remain stealth to unauthorized IP addresses. The service is revealed only when a client includes a special authentication token (AT) in the IP/TCP header. However this AT is generated from a secret shared between the clients/servers and distributed manually to each endpoint. As a result, these defense measures have failed to be widely adopted by other protocols such as HTTP/S due to challenges in distributing the shared secrets. In this paper we propose a scalable solution to this problem for services accessed by domain name. We make the following observation: automated network scanners access servers by IP address, while legitimate clients access the server by name. Therefore a service should only reveal itself to clients who know its name. Based on this principal, we have created a proof of the verifier’s identity (a.k.a. PROVIDE) protocol that allows a prover (legitimate user) to convince a verifier (service) that it is knowledgeable of the verifier’s identity. We present a PROVIDE implementation using a PKP and DNS (PKP+DNS) that uses DNS TXT records to distribute identification tokens (IDT) while DNS PTR records for the service’s domain name are prohibited to prevent reverse DNS lookups. Clients are modified to make an additional DNS TXT query to obtain the IDT which is used by the PKP to generate an AT. The inclusion of an AT in the packet header, generated from the DNS TXT query, is proof the client knows the service’s identity. We analyze the effectiveness of this mechanism with respect to brute force attempts for various strength ATs and discuss practical considerations.This work has been supported by the National Science Foundation (NSF) awards #1430145, #1414119, and #1012798
    • …
    corecore