164 research outputs found

    Digital watermarking in medical images

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/12/2005.This thesis addresses authenticity and integrity of medical images using watermarking. Hospital Information Systems (HIS), Radiology Information Systems (RIS) and Picture Archiving and Communication Systems (P ACS) now form the information infrastructure for today's healthcare as these provide new ways to store, access and distribute medical data that also involve some security risk. Watermarking can be seen as an additional tool for security measures. As the medical tradition is very strict with the quality of biomedical images, the watermarking method must be reversible or if not, region of Interest (ROI) needs to be defined and left intact. Watermarking should also serve as an integrity control and should be able to authenticate the medical image. Three watermarking techniques were proposed. First, Strict Authentication Watermarking (SAW) embeds the digital signature of the image in the ROI and the image can be reverted back to its original value bit by bit if required. Second, Strict Authentication Watermarking with JPEG Compression (SAW-JPEG) uses the same principal as SAW, but is able to survive some degree of JPEG compression. Third, Authentication Watermarking with Tamper Detection and Recovery (AW-TDR) is able to localise tampering, whilst simultaneously reconstructing the original image

    A digital signature and watermarking based authentication system for JPEG2000 images

    Get PDF
    In this thesis, digital signature based authentication system was introduced, which is able to protect JPEG2000 images in different flavors, including fragile authentication and semi-fragile authentication. The fragile authentication is to protect the image at code-stream level, and the semi-fragile is to protect the image at the content level. The semi-fragile can be further classified into lossy and lossless authentication. With lossless authentication, the original image can be recovered after verification. The lossless authentication and the new image compression standard, JPEG2000 is mainly discussed in this thesis

    Digital Watermarking as Content Protection Scheme

    Full text link
    Nowadays, as the Internet grows rapidly, the copyright laws are not effective anymore, since a lot of copyrighted products (picture, audio, video, document, etc.) are available as digital data. Any unauthorized parties able to produce identical copies of digital data without degrading the original contents and to distribute the copies over the network. This condition has led to a strong demand for reliable and secure distribution of digital data over networks. Such a technique developed to overcome this problem is digital watermarking. Digital watermarking is a process in digital domain, which embeds a watermark into a copyrighted digital data, to protect its value, so that it cannot be used by unauthorized parties. This paper is intended to give an overview on digital watermarking. First, three application fields of watermarking are described and illustrated with some scenarios, namely watermarking for copyright protection, watermarking for copy protection, and watermarking for image authentication. Then watermarking techniques are discussed, starting from the basic watermarking procedure, followed by review of some watermarking techniques. And later, some attacks and obstacles to watermarking are highlighted. In conclusion, digital watermarking technology plays important role in content protection issues. Attacks and obstacles are also had to be faced by this technology. The main obstacle is that there is no standard available for watermarking techniques. Without any specific standard, it is difficult to determine how robust a watermarking technique should be

    A New Watermarking Algorithm Based on Human Visual System for Content Integrity Verification of Region of Interest

    Get PDF
    This paper proposes a semi-fragile, robust-to-JPEG2000 compression watermarking method which is based on the Human Visual System (HVS). This method is designed to verify the content integrity of Region of Interest (ROI) in tele-radiology images. The design of watermarking systems based on HVS leads to the possibility of embedding watermarks in places that are not obvious to the human eye. In this way, notwithstanding increased capacity and robustness, it becomes possible to hide more watermarks. Based on perceptual model of HVS, we propose a new watermarking scheme that embeds the watermarks using a replacement method. Thus, the proposed method not only detects the watermarks but also extracts them. The novelty of our ROI-based method is in the way that we interpret the obtained coefficients of the HVS perceptual model: instead of interpreting these coefficients as weights, we assume them to be embedding locations. In our method, the information to be embedded is extracted from inter-subband statistical relations of ROI. Then, the semi-fragile watermarks are embedded in the obtained places in level 3 of the DWT decomposition of the Region of Background (ROB). The compatibility of the embedded signatures and extracted watermarks is used to verify the content of ROI. Our simulations confirm improved fidelity and robustness

    Development of variable voltage variable frequency drive system for induction motor speed control

    Get PDF
    This project describes the development of a Variable Voltage Variable Frequency (VVVF) system that controls the speed of Induction Motor (IM) at specific speed. Texas Instrument C2000 Microcontroller (TMS320F28335) has been used in this project as the interface between the control design with the IM. The Texas Instrument microcontroller has been combined with the MATLAB/Simulink and the VVVF system as the communication interface for processing the speed control system. The combination between power electronic circuits and microcontroller along with variable voltage variable frequency (VVVF) technique is able to control the target speed of IM. The target value of VVVF is implemented inside Lookup table and has been combined with the Proportional Integral (PI) speed control that generates the signal into the sinusoidal pulse width modulation (SPWM) for inverter operation. The SPWM signal is produced from the microcontroller with the instruction from MATLAB/Simulink, where the controller performs the output of the motor speed. The PI speed control receives the output of a closed loop feedback system from the motor speed and the error signal is reduced to achieve the value of desired speed reference. In the conclusion, the VVVF closed loop system is very useful to control the desired speed of motor at different variable voltage and variable frequency value. As collected for the results, its show, the VVVF with PI speed control can achieve the actual speed for the IM at 1297rpm and 1499rpm when the reference speeds have been set at 1300rpm and 1500rpm respectively. At the end it can be concluded that the VVVF combined with microcontroller have created an ecosystem for speed control that have achieved the objectives

    Digital watermarking in medical images

    Get PDF
    This thesis addresses authenticity and integrity of medical images using watermarking. Hospital Information Systems (HIS), Radiology Information Systems (RIS) and Picture Archiving and Communication Systems (P ACS) now form the information infrastructure for today's healthcare as these provide new ways to store, access and distribute medical data that also involve some security risk. Watermarking can be seen as an additional tool for security measures. As the medical tradition is very strict with the quality of biomedical images, the watermarking method must be reversible or if not, region of Interest (ROI) needs to be defined and left intact. Watermarking should also serve as an integrity control and should be able to authenticate the medical image. Three watermarking techniques were proposed. First, Strict Authentication Watermarking (SAW) embeds the digital signature of the image in the ROI and the image can be reverted back to its original value bit by bit if required. Second, Strict Authentication Watermarking with JPEG Compression (SAW-JPEG) uses the same principal as SAW, but is able to survive some degree of JPEG compression. Third, Authentication Watermarking with Tamper Detection and Recovery (AW-TDR) is able to localise tampering, whilst simultaneously reconstructing the original image.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Robust Multiple Image Watermarking Based on Spread Transform

    Get PDF
    • …
    corecore