1,540 research outputs found

    Securing a UAV Using Features from an EEG Signal

    Get PDF
    This thesis focuses on an approach which entails the extraction of Beta component of the EEG (Electroencephalogram) signal of a user and uses his/her EEG beta data to generate a random AES (Advanced Encryption Standard) encryption key. This Key is used to encrypt the communication between the UAVs (Unmanned aerial vehicles) and the ground control station. UAVs have attracted both commercial and military organizations in recent years. The progress in this field has reached significant popularity, and the research has incorporated different areas from the scientific domain. UAV communication became a significant concern when an attack on a Predator UAV occurred in 2009, which allowed the hijackers to get the live video stream. Since a UAVs major function depend on its onboard auto pilot, it is important to harden the system against vulnerabilities. In this thesis, we propose a biometric system to encrypt the UAV communication by generating a key which is derived from Beta component of the EEG signal of a user. We have developed a safety mechanism that gets activated in case the communication of the UAV from the ground control station gets attacked. This system was validated on a commercial UAV under malicious attack conditions during which we implement a procedure where the UAV return safely to an initially deployed "home" position

    Security and Privacy for Green IoT-based Agriculture: Review, Blockchain solutions, and Challenges

    Get PDF
    open access articleThis paper presents research challenges on security and privacy issues in the field of green IoT-based agriculture. We start by describing a four-tier green IoT-based agriculture architecture and summarizing the existing surveys that deal with smart agriculture. Then, we provide a classification of threat models against green IoT-based agriculture into five categories, including, attacks against privacy, authentication, confidentiality, availability, and integrity properties. Moreover, we provide a taxonomy and a side-by-side comparison of the state-of-the-art methods toward secure and privacy-preserving technologies for IoT applications and how they will be adapted for green IoT-based agriculture. In addition, we analyze the privacy-oriented blockchain-based solutions as well as consensus algorithms for IoT applications and how they will be adapted for green IoT-based agriculture. Based on the current survey, we highlight open research challenges and discuss possible future research directions in the security and privacy of green IoT-based agriculture

    Tactical ISR/C2 Integration with AI/ML Augmentation

    Get PDF
    NPS NRP Project PresentationNAVPLAN 2021 specifies Distributed Maritime Operations (DMO) with a tactical grid to connect distributed nodes with processing at the tactical edge to include Artificial Intelligence/Machine Learning (AI/ML) in support of Expeditionary Advanced Base Operations (EABO) and Littoral Operations in a Contested Environment (LOCE). Joint All-Domain Command and Control (JADC2) is the concept for sensor integration. However, Intelligence, Surveillance and Reconnaissance (ISR) and Command and Control (C2) hardware and software have yet to be fully defined, tools integrated, and configurations tested. This project evaluates options for ISR and C2 integration into a Common Operational Picture (COP) with AI/ML for decision support on tactical clouds in support of DMO, EABO, LOCE and JADC2 objectives.Commander, Naval Surface Forces (CNSF)U.S. Fleet Forces Command (USFF)This research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    A Secure and Distributed Architecture for Vehicular Cloud and Protocols for Privacy-preserving Message Dissemination in Vehicular Ad Hoc Networks

    Get PDF
    Given the enormous interest in self-driving cars, Vehicular Ad hoc NETworks (VANETs) are likely to be widely deployed in the near future. Cloud computing is also gaining widespread deployment. Marriage between cloud computing and VANETs would help solve many of the needs of drivers, law enforcement agencies, traffic management, etc. The contributions of this dissertation are summarized as follows: A Secure and Distributed Architecture for Vehicular Cloud: Ensuring security and privacy is an important issue in the vehicular cloud; if information exchanged between entities is modified by a malicious vehicle, serious consequences such as traffic congestion and accidents can occur. In addition, sensitive data could be lost, and human lives also could be in danger. Hence, messages sent by vehicles must be authenticated and securely delivered to vehicles in the appropriate regions. In this dissertation, we present a secure and distributed architecture for the vehicular cloud which uses the capabilities of vehicles to provide various services such as parking management, accident alert, traffic updates, cooperative driving, etc. Our architecture ensures the privacy of vehicles and supports secure message dissemination using the vehicular infrastructure. A Low-Overhead Message Authentication and Secure Message Dissemination Scheme for VANETs: Efficient, authenticated message dissemination in VANETs are important for the timely delivery of authentic messages to vehicles in appropriate regions in the VANET. Many of the approaches proposed in the literature use Road Side Units (RSUs) to collect events (such as accidents, weather conditions, etc.) observed by vehicles in its region, authenticate them, and disseminate them to vehicles in appropriate regions. However, as the number of messages received by RSUs increases in the network, the computation and communication overhead for RSUs related to message authentication and dissemination also increases. We address this issue and present a low-overhead message authentication and dissemination scheme in this dissertation. On-Board Hardware Implementation in VANET: Design and Experimental Evaluation: Information collected by On Board Units (OBUs) located in vehicles can help in avoiding congestion, provide useful information to drivers, etc. However, not all drivers on the roads can benefit from OBU implementation because OBU is currently not available in all car models. Therefore, in this dissertation, we designed and built a hardware implementation for OBU that allows the dissemination of messages in VANET. This OBU implementation is simple, efficient, and low-cost. In addition, we present an On-Board hardware implementation of Ad hoc On-Demand Distance Vector (AODV) routing protocol for VANETs. Privacy-preserving approach for collection and dissemination of messages in VANETs: Several existing schemes need to consider safety message collection in areas where the density of vehicles is low and roadside infrastructure is sparse. These areas could also have hazardous road conditions and may have poor connectivity. In this dissertation, we present an improved method for securely collecting and disseminating safety messages in such areas which preserves the privacy of vehicles. We propose installing fixed OBUs along the roadside of dangerous roads (i.e., roads that are likely to have more ice, accidents, etc., but have a low density of vehicles and roadside infrastructure) to help collect data about the surrounding environment. This would help vehicles to be notified about the events on such roads (such as ice, accidents, etc.).Furthermore, to enhance the privacy of vehicles, our scheme allows vehicles to change their pseudo IDs in all traffic conditions. Therefore, regardless of whether the number of vehicles is low in the RSU or Group Leader GL region, it would be hard for an attacker to know the actual number of vehicles in the RSU/GL region

    A Study on Emerging Trends and Challenges in Mobile Cloud Computing

    Get PDF
    The proficiencies of mobile devices and mobile application continues to improve swiftly in relation to speed, computing power, storage and real world user friendly applications. Survey carried out by the Gartner Company (Famous global analytical consulting company) predicted more users to access the internet from the mobile devices than from the PCs by the year 2013. The outburst of the development in smart phones, applications and cloud computing concept has introduced Mobile Cloud Computing (MCC) as a dynamic technology for mobile devices. Mobile Cloud Computing (MCC) incorporates cloud computing into the mobile environment and overcome some problems in performance (e.g., battery life, storage), environment (e.g., scalability, availability) and security (reliability and privacy).Since MCC is still at primary stage of development we have to first theoretically understand the technology which would later on help us in the prediction of future research. In this paper, we introduce the background and theory of Mobile Cloud Computing (MCC), the benefits of MCC, challenges faced in MCC and finally some proposed possible future solution

    Wireless Network Security: Challenges, Threats and Solutions. A Critical Review

    Get PDF
    Abstract: Wireless security is the avoidance of unlawful access or impairment to computers using wireless networks. Securing wireless network has been a research in the past two decades without coming up with prior solution to which security method should be employed to prevent unlawful access of data. The aim of this study was to review some literatures on wireless security in the areas of attacks, threats, vulnerabilities and some solutions to deal with those problems. It was found that attackers (hackers) have different mechanisms to attack the networks through bypassing the security trap developed by organizations and they may use one weak pint to attack the whole network of an organization. However the author suggested using firewall in each wireless access point as the counter measure to protect data of the whole organization not to be attacked
    corecore