1,058 research outputs found

    Device-Based Isolation for Securing Cryptographic Keys

    Get PDF
    In this work, we describe an eective device-based isolation approach for achieving data security. Device-based isolation leverages the proliferation of personal computing devices to provide strong run-time guarantees for the condentiality of secrets. To demonstrate our isolation approach, we show its use in protecting the secrecy of highly sensitive data that is crucial to security operations, such as cryptographic keys used for decrypting ciphertext or signing digital signatures. Private key is usually encrypted when not used, however, when being used, the plaintext key is loaded into the memory of the host for access. In our threat model, the host may be compromised by attackers, and thus the condentiality of the host memory cannot be preserved. We present a novel and practical solution and its prototype called DataGuard to protect the secrecy of the highly sensitive data through the storage isolation and secure tunneling enabled by a mobile handheld device. DataGuard can be deployed for the key protection of individuals or organizations

    A survey on cyber security for smart grid communications

    Get PDF
    A smart grid is a new form of electricity network with high fidelity power-flow control, self-healing, and energy reliability and energy security using digital communications and control technology. To upgrade an existing power grid into a smart grid, it requires significant dependence on intelligent and secure communication infrastructures. It requires security frameworks for distributed communications, pervasive computing and sensing technologies in smart grid. However, as many of the communication technologies currently recommended to use by a smart grid is vulnerable in cyber security, it could lead to unreliable system operations, causing unnecessary expenditure, even consequential disaster to both utilities and consumers. In this paper, we summarize the cyber security requirements and the possible vulnerabilities in smart grid communications and survey the current solutions on cyber security for smart grid communications. © 2012 IEEE

    Rule-based conditional trust with OpenPGP.

    Get PDF
    This thesis describes a new trust model for OpenPGP encryption. This trust model uses conditional rule-based trust to establish key validity and trust. This thesis describes Trust Rules that may be used to sort and categorize keys automatically without user interaction. Trust Rules are also capable of integrating key revocation status into its calculations so it too is automated. This thesis presents that conditional trust established through Trust Rules can enforce stricter security while reducing the burden of use and automating the process of key validity, trust, and revocation

    Transparency of SIM profiles for the consumer remote SIM provisioning protocol

    Get PDF
    In mobile communication, User Equipment (UE) authenticates a subscriber to a Mobile Network Operator (MNO) using credentials from the MNO specified SIM profile that is securely stored inside the SIM card. Traditionally, a change in a subscriber's SIM profile, such as a change in a subscription, requires replacement of the physical SIM card. To address this shortcoming, the GSM Association (GSMA) has specified the consumer Remote SIM Provisioning (RSP) protocol. The protocol enables remote provisioning of SIM profiles from a server to SIM cards, also known as the embedded Universal Integrated Circuit Card (eUICC). In RSP, any GSMA-certified server is trusted by all eUICCs, and consequently any server can provision SIM profiles to all eUICCs, even those not originating from the MNO associated with the GSMA-certified RSP server. Consequently, an attacker, by compromising a server, can clone a genuine SIM profile and provision it to other eUICCs. To address this security problem, we present SIM Profile Transparency Protocol (SPTP) to detect malicious provisioning of SIM profiles. SPTP assures to the eUICC and the MNO that all SIM provisioning actions-both approved and unapproved-leave a permanent, non-repudiatable trail. We evaluate security guarantees provided by SPTP using a formal model, implement a prototype for SPTP, and evaluate the prototype against a set of practical requirements.Peer reviewe

    A Formal Specification of the DNSSEC Model

    Get PDF
    The Domain Name System Security Extensions (DNSSEC) is a suite of specifications that provide origin authentication and integrity assurance services for DNS data. In particular, DNSSEC was designed to protect resolvers from forged DNS data, such as the one generated by DNS cache poisoning. This article presents a minimalistic specification of a DNSSEC model which provides the grounds needed to formally state and verify security properties concerning the chain of trust of the DNSSEC tree. The model, which has been formalized and verified using the Coq proof assistant, specifies an abstract formulation of the behavior of the protocol and the corresponding security-related events, where security goals, such as the prevention of cache poisoning attacks, can be given a formal treatment

    SecureSurgiNET:a framework for ensuring security in telesurgery

    Get PDF
    The notion of surgical robotics is actively being extended to enable telesurgery, where both the surgeon and patient are remotely located and connected via a public network, which leads to many security risks. Being a safety-critical application, it is highly important to make telesurgery robust and secure against active and passive attacks. In this article, we propose the first complete framework, called SecureSurgiNET, for ensuring security in telesurgery environments. SecureSurgiNET is primarily based on a set of well-established protocols to provide a fool-proof telesurgical robotic system. For increasing the efficiency of secured telesurgery environments, the idea of a telesurgical authority is introduced that ensures the integrity, identity management, authentication policy implementation, and postoperative data security. An analysis is provided describing the security and throughput of Advanced Encryption Standard during the intraoperative phase of SecureSurgiNET. Moreover, we have tabulated the possible attacks on SecureSurgiNET along with the devised defensive measures. Finally, we also present a time complexity analysis of the SecureSurgiNET through simulations. © The Author(s) 2019
    corecore