39 research outputs found

    Context-based texture analysis for secure revocable iris-biometric key generation

    Full text link
    In this work we present an iris-biometric cryptosystem. Based on the idea of exploiting the most reliable components of iriscodes, cryptographic keys are extracted, long enough to be applied in common cryptosystems. The main benefit of our system is that cryptographic keys are directly derived from biometric data, thus, neither plain biometric data nor encrypted biometric data has to be stored in templates. Yet, we provide fully revocable cryptographic keys. Experimental results emphasize the worthiness of our approach

    The State-of-the-Art in Iris Biometric Cryptosystems

    Get PDF

    Multimodal Biometrics Enhancement Recognition System based on Fusion of Fingerprint and PalmPrint: A Review

    Get PDF
    This article is an overview of a current multimodal biometrics research based on fingerprint and palm-print. It explains the pervious study for each modal separately and its fusion technique with another biometric modal. The basic biometric system consists of four stages: firstly, the sensor which is used for enrolmen

    SECURING BIOMETRIC DATA

    Get PDF

    SECURING BIOMETRIC DATA

    Get PDF

    Iris Recognition Approach for Preserving Privacy in Cloud Computing

    Get PDF
    Biometric identification systems involve securing biometric traits by encrypting them using an encryption algorithm and storing them in the cloud. In recent decades, iris recognition schemes have been considered one of the most effective biometric models for identifying humans based on iris texture, due to their relevance and distinctiveness. The proposed system focuses on encrypting biometric traits. The user’s iris feature vector is encrypted and stored in the cloud. During the matching process, the user’s iris feature vector is compared with the one stored in the cloud. If it meets the threshold conditions, the user is authenticated. Iris identification in cloud computing involves several steps. First, the iris image is pre-processed to remove noise using the Hough transform. Then, the pixel values are normalized, Gabor filters are applied to extract iris features. The features are then encrypted using the AES 128-bit algorithm. Finally, the features of the test image are matched with the stored features on the cloud to verify authenticity. The process ensures the privacy and security of the iris data in cloud storage by utilizing encryption and efficient image processing techniques. The matching is performed by setting an appropriate threshold for comparison. Overall, the approach offers a significant level of safety, effectiveness, and accuracy

    Revocable and non-invertible multibiometric template protection based on matrix transformation

    Get PDF
    Biometric authentication refers to the use of measurable characteristics (or features) of the human body to provide secure, reliable and convenient access to a computer system or physical environment. These features (physiological or behavioural) are unique to individual subjects because they are usually obtained directly from their owner's body. Multibiometric authentication systems use a combination of two or more biometric modalities to provide improved performance accuracy without offering adequate protection against security and privacy attacks. This paper proposes a multibiometric matrix transformation based technique, which protects users of multibiometric systems from security and privacy attacks. The results of security and privacy analyses show that the approach provides high-level template security and user privacy compared to previous one-way transformation techniques

    Privacy and Security Assessment of Biometric Template Protection

    Full text link
    corecore