38 research outputs found

    Three dimensional quantum key distribution in the presence of several eavesdroppers

    Full text link
    Quantum key distribution based on encoding in three dimensional systems in the presence of several eavesdroppers is proposed. This extends the BB84 protocol in the presence of many eavesdroppers where two-level quantum systems (qubits) are replaced by three-level systems (qutrits). We discuss the scenarios involving two, three and four complementary bases. We derive the explicit form of Alice and Bob mutual information and the information gained by each eavesdropper. In particular, we show that, in the presence of only one eavesdropper, the protocol involving four bases is safer than the other ones. However, for two eavesdroppers, the security is strongly dependent on the attack probabilities. The effect of a large number of eavesdroppers is also investigated

    A general scheme for information interception in the ping pong protocol

    Get PDF
    The existence of an undetectable eavesdropping of dense coded information has been already demonstrated by Pavi\v{c}i\'c for the quantum direct communication based on the ping-pong paradigm. However, a) the explicit scheme of the circuit is only given and no design rules are provided, b) the existence of losses is implicitly assumed, c) the attack has been formulated against qubit based protocol only and it is not clear whether it can be adapted to higher dimensional systems. These deficiencies are removed in the presented contribution. A new generic eavesdropping scheme built on a firm theoretical background is proposed. In contrast to the previous approach, it does not refer to the properties of the vacuum state, so it is fully consistent with the absence of losses assumption. Moreover, the scheme applies to the communication paradigm based on signal particles of any dimensionality. It is also shown that some well known attacks are special cases of the proposed scheme.Comment: 10 pages, 4 figure

    Quantum Secure Telecommunication Systems

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing

    Ideal quantum protocols in the non-ideal physical world

    Get PDF
    The development of quantum protocols from conception to experimental realizations is one of the main sources of the stimulating exchange between fundamental and experimental research characteristic to quantum information processing. In this thesis we contribute to the development of two recent quantum protocols, Universal Blind Quantum Computation (UBQC) and Quantum Digital Signatures (QDS). UBQC allows a client to delegate a quantum computation to a more powerful quantum server while keeping the input and computation private. We analyse the resilience of the privacy of UBQC under imperfections. Then, we introduce approximate blindness quantifying any compromise to privacy, and propose a protocol which enables arbitrary levels of security despite imperfections. Subsequently, we investigate the adaptability of UBQC to alternative implementations with practical advantages. QDS allow a party to send a message to other parties which cannot be forged, modified or repudiated. We analyse the security properties of a first proof-of-principle experiment of QDS, implemented in an optical system. We estimate the security failure probabilities of our system as a function of protocol parameters, under all but the most general types of attacks. Additionally, we develop new techniques for analysing transformations between symmetric sets of states, utilized not only in the security proofs of QDS but in other applications as well

    High-dimensional quantum communication over deployed fiber

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.Cataloged from PDF version of thesis.Includes bibliographical references (pages 129-143).Quantum key distribution (QKD) exploits the inherent strangeness of quantum mechanics to improve secure communication, enabling two pre-authenticated participants to establish symmetric encryption keys over long distances, without making any assumptions about the computational abilities of an adversary. QKD commonly relies on the transmission and detection of single photons to distribute the secret keys, but the secret-key generation rates are often limited by hardware, namely the ability to produce or detect nonclassical states of light. We address this challenge by using high-dimensional encoding to increase the secure information yield per detected photon. In this thesis, we present security analysis for and the first demonstrations of a resource-efficient high-dimensional QKD protocol, including two varieties of implementation that each have different strengths and weaknesses. We introduce a 42-km deployed fiber testbed that we use to demonstrate our high-dimensional QKD protocol. We also demonstrate the violation of a steering inequality, confirming that we can produce entanglement in the lab and distribute it over the deployed fiber. By these experiments, we demonstrate both the utility of our high-dimensional QKD protocol and the feasibility of our testbed for further applications in quantum communication and networking.Supported by the DARPA Information in a Photon program from the Army Research Office W911NF-10-1-0416 Support by the Columbia Optics and Quantum Electronics IGERT under NSF DGE-1069420by Catherine Lee.Ph. D

    Breaking simple quantum position verification protocols with little entanglement

    Full text link
    Instantaneous nonlocal quantum computation (INQC) evades apparent quantum and relativistic constraints and allows to attack generic quantum position verification (QPV) protocols (aiming at securely certifying the location of a distant prover) at an exponential entanglement cost. We consider adversaries sharing maximally entangled pairs of qudits and find low-dimensional INQC attacks against the simple practical family of QPV protocols based on single photons polarized at an angle θ\theta. We find exact attacks against some rational angles, including some sitting outside of the Clifford hierarchy (e.g. π/6\pi/6), and show no θ\theta allows to tolerate errors higher than 5103\simeq 5\cdot 10^{-3} against adversaries holding two ebits per protocol's qubit.Comment: 13 pages, 6 figure

    Quantum information with black boxes : lifting protocols from theory to implementation

    Get PDF
    According to recent estimates, 10^18 bytes of data are generated on a daily basis around the globe. Our information society urges for radical solutions to treat such data deluge. By exploiting fundamental key elements of quantum theory -arguably the most probed theory of modern physics- quantum information science is nowadays revolutionizing the way in which we acquire, process, store and transmit information. In the midst of the information era, the potential of quantum technologies is being recognized by the industry sector, and in turn, new capabilities for quantum information processing keep driving exciting discoveries related to more fundamental aspects of science. There are several research programs all around the world fostering the development and commercialization of quantum technologies, mostly for cryptographic and randomness generation duties. Thus, the technological limitations that today step us aside from the quantum information era are gradually being overcome. But there is a fundamental issue that still needs to be faced: the impossibility to know what is really going on in quantum experiments, due to their atomic-scale dimensions. Indeed, how will an average user guarantee the proper functioning of a quantum device that has been purchased from an external company? To his eyes, the device will merely look like a black box. Even if the customer holds a PhD in quantum science, the issue will remain fundamentally cumbersome because of the impossibility to fully control, i.e. monitor, all the physical processes occurring in any quantum experiment. Furthermore, the situation turns even more dramatic when considering adversarial applications, where a malicious eavesdropper could break the devices to manipulate their internal working, turning the protocol insecure and hence irrelevant as well. Therefore, it is the purpose of this Thesis to contribute to the experimental development of quantum information protocols with uncharacterized devices, namely, device-independent quantum information protocols. These protocols are naturally immune to any attack or failure related to mismatches between protocol theory and its actual implementation. This is achieved throughout the different Chapters by pursuing the following three overlapping duties: (i) To broaden theoretic capabilities by establishing a richer understanding of relevant fundamental resources lying at the basis of the theory of quantum information with uncharacterized devices. (ii) To develop competitive quantum information protocols by finding an adequate trade-off between high-performance and practicability; between the power of the device-independent framework and its less demanding, so-called semi-device-independent, relaxations. (iii) To analyze and improve experimental conditions of diverse physical setups in order to carry out implementations in proof-of-principle experiments demonstrating quantum information protocols with black boxes. Our objective of turning the theory of quantum information into a graspable technology for our society through the development and implementation of protocols based on the minimalist, user-friendly, black-box paradigm contributes not only to the technological development of these protocols, but it also offers valuable insights on more fundamental aspects of quantum theory. In this sense, we contribute to the characterization and quantification of entanglement -the pivotal quantum resource at the basis of most testable phenomena without classical account- in scenarios of practical interest where uncharacterized devices are used. From the more applied perspective, we contribute to the development of two specific information tasks: the certification of genuinely random numbers in device-independent and semi-device-independent scenarios, and the generation of a shared secret key among two parties in a full device-independent manner.De acuerdo con estimaciones recientes, 10^18 bytes de datos se generan diariamente alrededor del mundo. Nuestra sociedad necesita urgentemente soluciones efectivas para lidiar con este diluvio de datos. Utilizando elementos fundamentales de la teoría cuántica -la teoría más explorada de la física moderna, posiblemente- la información cuántica está revolucionando la forma en la que adquirimos, procesamos, almacenamos y transmitimos información. En plena era de la información, el sector industrial reconoce cada vez más el potencial de las tecnologías cuánticas, y a su vez nuevos desarrollos en el procesamiento de la información cuántica continúan impulsando descubrimientos prominentes relacionados con aspectos científcos de carácter más fundamental. Existen varios programas de investigación alrededor del mundo desarrollando y comercializando tecnologías cuánticas, principalmente para aplicaciones de criptografía y generación de números aleatorios. Así, las limitaciones que hoy nos separan de la era de la información cuántica están siendo gradualmente superadas. Sin embargo, existe un problema fundamental que aún necesita ser enfrentado: la imposibilidad de saber lo que realmente sucede en un experimento cuántico, debido a sus dimensiones de tamaño atómico. En efecto, ¿cómo podrá un usuario garantizar el funcionamiento adecuado de un dispositivo cuántico que ha sido adquirido a través de una compañía externa? A sus ojos el dispositivo será una verdadera caja negra. Incluso si el usuario contara con un Doctorado en ciencia cuántica, el problema prevalecería insoluble debido a la imposibilidad de controlar a la perfección, es decir monitorear, todos los procesos físicos que ocurren en cualquier experimento cuántico. Además, la situación se vuelve aún más dramática si se piensa en aplicaciones en donde un agente maligno pudiese hackear los dispositivos y manipular su funcionamiento interno, volviendo así el protocolo en cuestión inseguro y por ende también irrelevante. El propósito de esta Tesis es entonces contribuir al desarrollo experimental de protocolos de información cuántica con dispositivos sin caracterizar, llamados "device-independent". Estos protocolos son, por naturaleza, immunes a cualquier ataque o falla relacionada con desajustes entre la teoría y la implementación del protocolo. Esto se logra a lo largo de los diferentes Capítulos prosiguiendo las siguientes tres tareas que en ocasiones se traslapan: (i) Ampliar las capacidades teóricas estableciendo un entendimiento mayor de los recursos fundamentales de la teoría de la información cuántica con dispositivos sin caracterizar. (ii) Desarrollar protocolos de información cuántica competitivos, encontrando un intercambio adecuado entre alto rendimiento y practicabilidad; entre el poder del marco de trabajo device-independent y sus menos demandantes versiones, dichas "semi-device-independent". (iii) Analizar y mejorar las condiciones experimentales de diversas plataformas para llevar a cabo implementaciones en experimentos de prueba de principio, demostrando la realización de protocolos de información cuántica con cajas negras. Nuestro objetivo de convertir la teoría de la información cuántica en una tecnología tangible para nuestra sociedad a través del uso de dispositivos sin caracterizar contribuye no solamente al desarrollo tecnológico de estos protocolos, sino que también ofrece una visión valiosa de aspectos más fundamental. En este sentido, contribuimos a la caracterización y cuantificación del entrelazamiento -el recurso cuántico fundamental de muchos fenómenos sin contraparte clásica- en escenarios de interés práctico en dónde se consideran dispositivos sin caracterizar. Desde la perspectiva más aplicada, contribuimos al desarrollo de dos tareas específicas: la certificación de números genuinamente aleatorios en escenarios device-independent y semi-device-independent, y la generación de una llave secreta entre dos partes de manera device-independent.Postprint (published version
    corecore