1,607 research outputs found

    Exploring scholarly data with Rexplore.

    Get PDF
    Despite the large number and variety of tools and services available today for exploring scholarly data, current support is still very limited in the context of sensemaking tasks, which go beyond standard search and ranking of authors and publications, and focus instead on i) understanding the dynamics of research areas, ii) relating authors ‘semantically’ (e.g., in terms of common interests or shared academic trajectories), or iii) performing fine-grained academic expert search along multiple dimensions. To address this gap we have developed a novel tool, Rexplore, which integrates statistical analysis, semantic technologies, and visual analytics to provide effective support for exploring and making sense of scholarly data. Here, we describe the main innovative elements of the tool and we present the results from a task-centric empirical evaluation, which shows that Rexplore is highly effective at providing support for the aforementioned sensemaking tasks. In addition, these results are robust both with respect to the background of the users (i.e., expert analysts vs. ‘ordinary’ users) and also with respect to whether the tasks are selected by the evaluators or proposed by the users themselves

    Making Sense of Document Collections with Map-Based Visualizations

    Get PDF
    As map-based visualizations of documents become more ubiquitous, there is a greater need for them to support intellectual and creative high-level cognitive activities with collections of non-cartographic materials -- documents. This dissertation concerns the conceptualization of map-based visualizations as tools for sensemaking and collection understanding. As such, map-based visualizations would help people use georeferenced documents to develop understanding, gain insight, discover knowledge, and construct meaning. This dissertation explores the role of graphical representations (such as maps, Kohonen maps, pie charts, and other) and interactions with them for developing map-based visualizations capable of facilitating sensemaking activities such as collection understanding. While graphical representations make document collections more perceptually and cognitively accessible, interactions allow users to adapt representations to users’ contextual needs. By interacting with representations of documents or collections and being able to construct representations of their own, people are better able to make sense of information, comprehend complex structures, and integrate new information into their existing mental models. In sum, representations and interactions may reduce cognitive load and consequently expedite the overall time necessary for completion of sensemaking activities, which typically take much time to accomplish. The dissertation proceeds in three phases. The first phase develops a conceptual framework for translating ontological properties of collections to representations and for supporting visual tasks by means of graphical representations. The second phase concerns the cognitive benefits of interaction. It conceptualizes how interactions can help people during complex sensemaking activities. Although the interactions are explained on the example of a prototype built with Google Maps, they are independent iv of Google Maps and can be applicable to various other technologies. The third phase evaluates the utility, analytical capabilities and usability of the additional representations when users interact with a visualization prototype – VIsual COLlection EXplorer. The findings suggest that additional representations can enhance understanding of map-based visualizations of library collections: specifically, they can allow users to see trends, gaps, and patterns in ontological properties of collections

    Organization and exploration of heterogeneous personal data collected in daily life

    Full text link

    Video browsing interfaces and applications: a review

    Get PDF
    We present a comprehensive review of the state of the art in video browsing and retrieval systems, with special emphasis on interfaces and applications. There has been a significant increase in activity (e.g., storage, retrieval, and sharing) employing video data in the past decade, both for personal and professional use. The ever-growing amount of video content available for human consumption and the inherent characteristics of video data—which, if presented in its raw format, is rather unwieldy and costly—have become driving forces for the development of more effective solutions to present video contents and allow rich user interaction. As a result, there are many contemporary research efforts toward developing better video browsing solutions, which we summarize. We review more than 40 different video browsing and retrieval interfaces and classify them into three groups: applications that use video-player-like interaction, video retrieval applications, and browsing solutions based on video surrogates. For each category, we present a summary of existing work, highlight the technical aspects of each solution, and compare them against each other

    ComputableViz: Mathematical Operators as a Formalism for Visualization Processing and Analysis

    Full text link
    Data visualizations are created and shared on the web at an unprecedented speed, raising new needs and questions for processing and analyzing visualizations after they have been generated and digitized. However, existing formalisms focus on operating on a single visualization instead of multiple visualizations, making it challenging to perform analysis tasks such as sorting and clustering visualizations. Through a systematic analysis of previous work, we abstract visualization-related tasks into mathematical operators such as union and propose a design space of visualization operations. We realize the design by developing ComputableViz, a library that supports operations on multiple visualization specifications. To demonstrate its usefulness and extensibility, we present multiple usage scenarios concerning processing and analyzing visualization, such as generating visualization embeddings and automatically making visualizations accessible. We conclude by discussing research opportunities and challenges for managing and exploiting the massive visualizations on the web.Comment: 15 pages, 12 figures. In the ACM Conference on Human Factors in Computing Systems (CHI) 202
    • …
    corecore