43 research outputs found

    Online learning on the programmable dataplane

    Get PDF
    This thesis makes the case for managing computer networks with datadriven methods automated statistical inference and control based on measurement data and runtime observations—and argues for their tight integration with programmable dataplane hardware to make management decisions faster and from more precise data. Optimisation, defence, and measurement of networked infrastructure are each challenging tasks in their own right, which are currently dominated by the use of hand-crafted heuristic methods. These become harder to reason about and deploy as networks scale in rates and number of forwarding elements, but their design requires expert knowledge and care around unexpected protocol interactions. This makes tailored, per-deployment or -workload solutions infeasible to develop. Recent advances in machine learning offer capable function approximation and closed-loop control which suit many of these tasks. New, programmable dataplane hardware enables more agility in the network— runtime reprogrammability, precise traffic measurement, and low latency on-path processing. The synthesis of these two developments allows complex decisions to be made on previously unusable state, and made quicker by offloading inference to the network. To justify this argument, I advance the state of the art in data-driven defence of networks, novel dataplane-friendly online reinforcement learning algorithms, and in-network data reduction to allow classification of switchscale data. Each requires co-design aware of the network, and of the failure modes of systems and carried traffic. To make online learning possible in the dataplane, I use fixed-point arithmetic and modify classical (non-neural) approaches to take advantage of the SmartNIC compute model and make use of rich device local state. I show that data-driven solutions still require great care to correctly design, but with the right domain expertise they can improve on pathological cases in DDoS defence, such as protecting legitimate UDP traffic. In-network aggregation to histograms is shown to enable accurate classification from fine temporal effects, and allows hosts to scale such classification to far larger flow counts and traffic volume. Moving reinforcement learning to the dataplane is shown to offer substantial benefits to stateaction latency and online learning throughput versus host machines; allowing policies to react faster to fine-grained network events. The dataplane environment is key in making reactive online learning feasible—to port further algorithms and learnt functions, I collate and analyse the strengths of current and future hardware designs, as well as individual algorithms

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modied our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the eld of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Synchronous Transmissions in Low-Power Wireless: A Survey of Communication Protocols and Network Services

    Get PDF
    Low-power wireless communication is a central building block of Cyber-physical Systems and the Internet of Things. Conventional low-power wireless protocols make avoiding packet collisions a cornerstone design choice. The concept of synchronous transmissions challenges this view. As collisions are not necessarily destructive, under specific circumstances, commodity low-power wireless radios are often able to receive useful information even in the presence of superimposed signals from different transmitters. We survey the growing number of protocols that exploit synchronous transmissions for higher robustness and efficiency as well as unprecedented functionality and versatility compared to conventional designs. The illustration of protocols based on synchronous transmissions is cast in a conceptional framework we establish, with the goal of highlighting differences and similarities among the proposed solutions. We conclude the paper with a discussion on open research questions in this field.Comment: Submitted to ACM Computing Survey

    Dependability where the mobile world meets the enterprise world

    Get PDF
    As we move toward increasingly larger scales of computing, complexity of systems and networks has increased manifold leading to massive failures of cloud providers (Amazon Cloudfront, November 2014) and geographically localized outages of cellular services (T-Mobile, June 2014). In this dissertation, we investigate the dependability aspects of two of the most prevalent computing platforms today, namely, smartphones and cloud computing. These two seemingly disparate platforms are part of a cohesive story—they interact to provide end-to-end services which are increasingly being delivered over mobile platforms, examples being iCloud, Google Drive and their smartphone counterparts iPhone and Android. ^ In one of the early work on characterizing failures in dominant mobile OSes, we analyzed bug repositories of Android and Symbian and found similarities in their failure modes [ISSRE2010]. We also presented a classification of root causes and quantified the impact of ease of customizing the smartphones on system reliability. Our evaluation of Inter-Component Communication in Android [DSN2012] show an alarming number of exception handling errors where a phone may be crashed by passing it malformed component invocation messages, even from unprivileged applications. In this work, we also suggest language extensions that can mitigate these problems. ^ Mobile applications today are increasingly being used to interact with enterprise-class web services commonly hosted in virtualized environments. Virutalization suffers from the problem of imperfect performance isolation where contention for low-level hardware resources can impact application performance. Through a set of rigorous experiments in a private cloud testbed and in EC2, we show that interference induced performance degradation is a reality. Our experiments have also shown that optimal configuration settings for web servers change during such phases of interference. Based on this observation, we design and implement the IC 2engine which can mitigate effects of interference by reconfiguring web server parameters [MW2014]. We further improve IC 2 by incorporating it into a two-level configuration engine, named ICE, for managing web server clusters [ICAC2015]. Our evaluations show that, compared to an interference agnostic configuration, IC 2 can improve response time of web servers by upto 40%, while ICE can improve response time by up to 94% during phases of interference

    Methods for Massive, Reliable, and Timely Access for Wireless Internet of Things (IoT)

    Get PDF

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Towards 6G Through SDN and NFV-Based Solutions for Terrestrial and Non-Terrestrial Networks

    Get PDF
    As societal needs continue to evolve, there has been a marked rise in a wide variety of emerging use cases that cannot be served adequately by existing networks. For example, increasing industrial automation has not only resulted in a massive rise in the number of connected devices, but has also brought forth the need for remote monitoring and reconnaissance at scale, often in remote locations characterized by a lack of connectivity options. Going beyond 5G, which has largely focused on enhancing the quality-of-experience for end devices, the next generation of wireless communications is expected to be centered around the idea of "wireless ubiquity". The concept of wireless ubiquity mandates that the quality of connectivity is not only determined by classical metrics such as throughput, reliability, and latency, but also by the level of coverage offered by the network. In other words, the upcoming sixth generation of wireless communications should be characterized by networks that exhibit high throughput and reliability with low latency, while also providing robust connectivity to a multitude of devices spread across the surface of the Earth, without any geographical constraints. The objective of this PhD thesis is to design novel architectural solutions for the upcoming sixth generation of cellular and space communications systems with a view to enabling wireless ubiquity with software-defined networking and network function virtualization at its core. Towards this goal, this thesis introduces a novel end-to-end system architecture for cellular communications characterized by innovations such as the AirHYPE wireless hypervisor. Furthermore, within the cellular systems domain, solutions for radio access network design with software-defined mobility management, and containerized core network design optimization have also been presented. On the other hand, within the space systems domain, this thesis introduces the concept of the Internet of Space Things (IoST). IoST is a novel cyber-physical system centered on nanosatellites and is capable of delivering ubiquitous connectivity for a wide variety of use cases, ranging from monitoring and reconnaissance to in-space backhauling. In this direction, contributions relating to constellation design, routing, and automatic network slicing form a key aspect of this thesis.Ph.D

    Automatic Algorithm Selection for Complex Simulation Problems

    Get PDF
    To select the most suitable simulation algorithm for a given task is often difficult. This is due to intricate interactions between model features, implementation details, and runtime environment, which may strongly affect the overall performance. The thesis consists of three parts. The first part surveys existing approaches to solve the algorithm selection problem and discusses techniques to analyze simulation algorithm performance.The second part introduces a software framework for automatic simulation algorithm selection, which is evaluated in the third part.Die Auswahl des passendsten Simulationsalgorithmus fĂźr eine bestimmte Aufgabe ist oftmals schwierig. Dies liegt an der komplexen Interaktion zwischen Modelleigenschaften, Implementierungsdetails und Laufzeitumgebung. Die Arbeit ist in drei Teile gegliedert. Der erste Teil befasst sich eingehend mit Vorarbeiten zur automatischen Algorithmenauswahl, sowie mit der Leistungsanalyse von Simulationsalgorithmen. Der zweite Teil der Arbeit stellt ein Rahmenwerk zur automatischen Auswahl von Simulationsalgorithmen vor, welches dann im dritten Teil evaluiert wird

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin
    corecore