273 research outputs found

    Learning Autonomous Flight Controllers with Spiking Neural Networks

    Full text link
    The ability of a robot to adapt in-mission to achieve an assigned goal is highly desirable. This thesis project places an emphasis on employing learning-based intelligent control methodologies to the development and implementation of an autonomous unmanned aerial vehicle (UAV). Flight control is carried out by evolving spiking neural networks (SNNs) with Hebbian plasticity. The proposed implementation is capable of learning and self-adaptation to model variations and uncertainties when the controller learned in simulation is deployed on a physical platform. Controller development for small multicopters often relies on simulations as an intermediate step, providing cheap, parallelisable, observable and reproducible optimisation with no risk of damage to hardware. Although model-based approaches have been widely utilised in the process of development, loss of performance can be observed on the target platform due to simplification of system dynamics in simulation (e.g., aerodynamics, servo dynamics, sensor uncertainties). Ignorance of these effects in simulation can significantly deteriorate performance when the controller is deployed. Previous approaches often require mathematical or simulation models with a high level of accuracy which can be difficult to obtain. This thesis, on the other hand, attempts to cross the reality gap between a low-fidelity simulation and the real platform. This is done using synaptic plasticity to adapt the SNN controller evolved in simulation to the actual UAV dynamics. The primary contribution of this work is the implementation of a procedural methodology for SNN control that integrates bioinspired learning mechanisms with artificial evolution, with an SNN library package (i.e. eSpinn) developed by the author. Distinct from existing SNN simulators that mainly focus on large-scale neuron interactions and learning mechanisms from a neuroscience perspective, the eSpinn library draws particular attention to embedded implementations on hardware that is applicable for problems in the robotic domain. This C++ software package is not only able to support simulations in the MATLAB and Python environment, allowing rapid prototyping and validation in simulation; but also capable of seamless transition between simulation and deployment on the embedded platforms. This work implements a modified version of the NEAT neuroevolution algorithm and leverages the power of evolutionary computation to discover functional controller compositions and optimise plasticity mechanisms for online adaptation. With the eSpinn software package the development of spiking neurocontrollers for all degrees of freedom of the UAV is demonstrated in simulation. Plastic height control is carried out on a physical hexacopter platform. Through a set of experiments it is shown that the evolved plastic controller can maintain its functionality by self-adapting to model changes and uncertainties that take place after evolutionary training, and consequently exhibit better performance than its non-plastic counterpart

    Backwards is the way forward: feedback in the cortical hierarchy predicts the expected future

    Get PDF
    Clark offers a powerful description of the brain as a prediction machine, which offers progress on two distinct levels. First, on an abstract conceptual level, it provides a unifying framework for perception, action, and cognition (including subdivisions such as attention, expectation, and imagination). Second, hierarchical prediction offers progress on a concrete descriptive level for testing and constraining conceptual elements and mechanisms of predictive coding models (estimation of predictions, prediction errors, and internal models)

    Embodied Decisions and the Predictive Brain

    Get PDF
    Decision-making has traditionally been modelled as a serial process, consisting of a number of distinct stages. The traditional account assumes that an agent first acquires the necessary perceptual evidence, by constructing a detailed inner repre- sentation of the environment, in order to deliberate over a set of possible options. Next, the agent considers her goals and beliefs, and subsequently commits to the best possible course of action. This process then repeats once the agent has learned from the consequences of her actions and subsequently updated her beliefs. Under this interpretation, the agent’s body is considered merely as a means to report the decision, or to acquire the relevant goods. However, embodied cognition argues that an agent’s body should be understood as a proper part of the decision-making pro- cess. Accepting this principle challenges a number of commonly held beliefs in the cognitive sciences, but may lead to a more unified account of decision-making. This thesis explores an embodied account of decision-making using a recent frame- work known as predictive processing. This framework has been proposed by some as a functional description of neural activity. However, if it is approached from an embodied perspective, it can also offer a novel account of decision-making that ex- tends the scope of our explanatory considerations out beyond the brain and the body. We explore work in the cognitive sciences that supports this view, and argue that decision theory can benefit from adopting an embodied and predictive perspective

    SpiNNaker - A Spiking Neural Network Architecture

    Get PDF
    20 years in conception and 15 in construction, the SpiNNaker project has delivered the world’s largest neuromorphic computing platform incorporating over a million ARM mobile phone processors and capable of modelling spiking neural networks of the scale of a mouse brain in biological real time. This machine, hosted at the University of Manchester in the UK, is freely available under the auspices of the EU Flagship Human Brain Project. This book tells the story of the origins of the machine, its development and its deployment, and the immense software development effort that has gone into making it openly available and accessible to researchers and students the world over. It also presents exemplar applications from ‘Talk’, a SpiNNaker-controlled robotic exhibit at the Manchester Art Gallery as part of ‘The Imitation Game’, a set of works commissioned in 2016 in honour of Alan Turing, through to a way to solve hard computing problems using stochastic neural networks. The book concludes with a look to the future, and the SpiNNaker-2 machine which is yet to come

    SpiNNaker - A Spiking Neural Network Architecture

    Get PDF
    20 years in conception and 15 in construction, the SpiNNaker project has delivered the world’s largest neuromorphic computing platform incorporating over a million ARM mobile phone processors and capable of modelling spiking neural networks of the scale of a mouse brain in biological real time. This machine, hosted at the University of Manchester in the UK, is freely available under the auspices of the EU Flagship Human Brain Project. This book tells the story of the origins of the machine, its development and its deployment, and the immense software development effort that has gone into making it openly available and accessible to researchers and students the world over. It also presents exemplar applications from ‘Talk’, a SpiNNaker-controlled robotic exhibit at the Manchester Art Gallery as part of ‘The Imitation Game’, a set of works commissioned in 2016 in honour of Alan Turing, through to a way to solve hard computing problems using stochastic neural networks. The book concludes with a look to the future, and the SpiNNaker-2 machine which is yet to come

    Stress, Cognition, and Human Performance: A Literature Review and Conceptual Framework

    Get PDF
    The following literature review addresses the effects of various stressors on cognition. While attempting to be as inclusive as possible, the review focuses its examination on the relationships between cognitive appraisal, attention, memory, and stress as they relate to information processing and human performance. The review begins with an overview of constructs and theoretical perspectives followed by an examination of effects across attention, memory, perceptual-motor functions, judgment and decision making, putative stressors such as workload, thermals, noise, and fatigue and closes with a discussion of moderating variables and related topics. In summation of the review, a conceptual framework for cognitive process under stress has been assembled. As one might imagine, the research literature that addresses stress, theories governing its effects on human performance, and experimental evidence that supports these notions is large and diverse. In attempting to organize and synthesize this body of work, I was guided by several earlier efforts (Bourne & Yaroush, 2003; Driskell, Mullen, Johnson, Hughes, & Batchelor, 1992; Driskell & Salas, 1996; Haridcock & Desmond, 2001; Stokes & Kite, 1994). These authors should be credited with accomplishing the monumental task of providing focused reviews in this area and their collective efforts laid the foundation for this present review. Similarly, the format of this review has been designed in accordance with these previous exemplars. However, each of these previous efforts either simply reported general findings, without sufficient experimental illustration, or narrowed their scope of investigation to the extent that the breadth of such findings remained hidden from the reader. Moreover, none of these examinations yielded an architecture that adequately describes or explains the inter-relations between information processing elements under stress conditions

    Attention is more than prediction precision [Commentary on target article]

    Get PDF
    A cornerstone of the target article is that, in a predictive coding framework, attention can be modelled by weighting prediction error with a measure of precision. We argue that this is not a complete explanation, especially in the light of ERP (event-related potentials) data showing large evoked responses for frequently presented target stimuli, which thus are predicted

    Efficient Learning Machines

    Get PDF
    Computer scienc
    • …
    corecore