283 research outputs found

    Adaptive load balancing routing algorithms for the next generation wireless telecommunications networks

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and was awarded by Brunel UniversityWith the rapid development of wireless networks, mesh networks are evolving as a new important technology, presenting a high research and commercial interest. Additionally, wireless mesh networks have a wide variety of applications, offering the ability to provide network access in both rural and urban areas with low cost of maintenance. One of the main functionalities of a wireless mesh network is load balancing routing, which is the procedure of finding the best, according to some criteria, routes that data need to follow to transfer from one node to another. Routing is one of the state-of-the-art areas of research because the current algorithms and protocols are not efficient and effective due to the diversity of the characteristics of these networks. In this thesis, two new routing algorithms have been developed for No Intra-Cell Interference (NICI) and Limited Intra-Cell Interference (LICI) networks based on WiMAX, the most advanced wireless technology ready for deployment. The algorithms created are based on the classical Dijkstra and Ford-Fulkerson algorithms and can be implemented in the cases of unicast and multicast transmission respectively.State scholarships foundation of Greece

    Development of Wireless Communication System for Reliable Acoustic Data Collection Toward Anomaly Detection on Mechanical Equipment

    Get PDF
    With the recent proliferation of Internet of Things (IoT) devices that can send and receive data via wireless communication, we are able to monitor and operate these devices remotely. An example of an IoT system using wireless communication is a system for anomaly detection in mechanical equipment using acoustic data. In order to detect anomalies using acoustic data, continuous recording is essential, thereby increasing the data size. Although Wi-Fi networks provide high-capacity data transfer, performance degradation cannot be avoided due to reasons such as packet losses caused by collisions with data from other devices using the same frequency and the increase in distance between two communicating devices. In the present study, we developed a wireless communication system for reliable acoustic data collection for anomaly detection in mechanical equipment. First, as preliminary experiments, we investigated the communication characteristics for the transmission of large-size data by Wi-Fi in indoor and outdoor environments. The results indicated the communication performance was insufficient for transferring all recorded data handled by this system. Therefore, we developed a simple heuristic transmission timing control method and a method that can reduce the amount of transmission data in order to realize a stable acoustic data collection system. Finally, through demonstration experiments using mechanical equipment in the field, we verified the feasibility of the acoustic data collection system.2021 International Conference on Computational Science and Computational Intelligence (CSCI 2021), 15-17 December, 2021, Las Vegas, Nevada, US

    Modeling and Optimization of Next-Generation Wireless Access Networks

    Get PDF
    The ultimate goal of the next generation access networks is to provide all network users, whether they are fixed or mobile, indoor or outdoor, with high data rate connectivity, while ensuring a high quality of service. In order to realize this ambitious goal, delay, jitter, error rate and packet loss should be minimized: a goal that can only be achieved through integrating different technologies, including passive optical networks, 4th generation wireless networks, and femtocells, among others. This thesis focuses on medium access control and physical layers of future networks. In this regard, the first part of this thesis discusses techniques to improve the end-to-end quality of service in hybrid optical-wireless networks. In these hybrid networks, users are connected to a wireless base station that relays their data to the core network through an optical connection. Hence, by integrating wireless and optical parts of these networks, a smart scheduler can predict the incoming traffic to the optical network. The prediction data generated herein is then used to propose a traffic-aware dynamic bandwidth assignment algorithm for reducing the end-to-end delay. The second part of this thesis addresses the challenging problem of interference management in a two-tier macrocell/femtocell network. A high quality, high speed connection for indoor users is ensured only if the network has a high signal to noise ratio. A requirement that can be fulfilled with using femtocells in cellular networks. However, since femtocells generate harmful interference to macrocell users in proximity of them, careful analysis and realistic models should be developed to manage the introduced interference. Thus, a realistic model for femtocell interference outside suburban houses is proposed and several performance measures, e.g., signal to interference and noise ratio and outage probability are derived mathematically for further analysis. The quality of service of cellular networks can be degraded by several factors. For example, in industrial environments, simultaneous fading and strong impulsive noise significantly deteriorate the error rate performance. In the third part of this thesis, a technique to improve the bit error rate of orthogonal frequency division multiplexing systems in industrial environments is presented. This system is the most widely used technology in next-generation networks, and is very susceptible to impulsive noise, especially in fading channels. Mathematical analysis proves that the proposed method can effectively mitigate the degradation caused by impulsive noise and significantly improve signal to interference and noise ratio and bit error rate, even in frequency-selective fading channels

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modiïŹed our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the ïŹeld of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    A Prospective Look: Key Enabling Technologies, Applications and Open Research Topics in 6G Networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. Particularly, this paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a profound study of the 6G vision and outlining five of its disruptive technologies, i.e., terahertz communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss their requirements, key challenges, and open research problems
    • 

    corecore