7,233 research outputs found

    A silent speech system based on permanent magnet articulography and direct synthesis

    Get PDF
    In this paper we present a silent speech interface (SSI) system aimed at restoring speech communication for individuals who have lost their voice due to laryngectomy or diseases affecting the vocal folds. In the proposed system, articulatory data captured from the lips and tongue using permanent magnet articulography (PMA) are converted into audible speech using a speaker-dependent transformation learned from simultaneous recordings of PMA and audio signals acquired before laryngectomy. The transformation is represented using a mixture of factor analysers, which is a generative model that allows us to efficiently model non-linear behaviour and perform dimensionality reduction at the same time. The learned transformation is then deployed during normal usage of the SSI to restore the acoustic speech signal associated with the captured PMA data. The proposed system is evaluated using objective quality measures and listening tests on two databases containing PMA and audio recordings for normal speakers. Results show that it is possible to reconstruct speech from articulator movements captured by an unobtrusive technique without an intermediate recognition step. The SSI is capable of producing speech of sufficient intelligibility and naturalness that the speaker is clearly identifiable, but problems remain in scaling up the process to function consistently for phonetically rich vocabularies

    SYNTHESIZING DYSARTHRIC SPEECH USING MULTI-SPEAKER TTS FOR DSYARTHRIC SPEECH RECOGNITION

    Get PDF
    Dysarthria is a motor speech disorder often characterized by reduced speech intelligibility through slow, uncoordinated control of speech production muscles. Automatic Speech recognition (ASR) systems may help dysarthric talkers communicate more effectively. However, robust dysarthria-specific ASR requires a significant amount of training speech is required, which is not readily available for dysarthric talkers. In this dissertation, we investigate dysarthric speech augmentation and synthesis methods. To better understand differences in prosodic and acoustic characteristics of dysarthric spontaneous speech at varying severity levels, a comparative study between typical and dysarthric speech was conducted. These characteristics are important components for dysarthric speech modeling, synthesis, and augmentation. For augmentation, prosodic transformation and time-feature masking have been proposed. For dysarthric speech synthesis, this dissertation has introduced a modified neural multi-talker TTS by adding a dysarthria severity level coefficient and a pause insertion model to synthesize dysarthric speech for varying severity levels. In addition, we have extended this work by using a label propagation technique to create more meaningful control variables such as a continuous Respiration, Laryngeal and Tongue (RLT) parameter, even for datasets that only provide discrete dysarthria severity level information. This approach increases the controllability of the system, so we are able to generate more dysarthric speech with a broader range. To evaluate their effectiveness for synthesis of training data, dysarthria-specific speech recognition was used. Results show that a DNN-HMM model trained on additional synthetic dysarthric speech achieves WER improvement of 12.2% compared to the baseline, and that the addition of the severity level and pause insertion controls decrease WER by 6.5%, showing the effectiveness of adding these parameters. Overall results on the TORGO database demonstrate that using dysarthric synthetic speech to increase the amount of dysarthric-patterned speech for training has a significant impact on the dysarthric ASR systems

    Methods for speaking style conversion from normal speech to high vocal effort speech

    Get PDF
    This thesis deals with vocal-effort-focused speaking style conversion (SSC). Specifically, we studied two topics on conversion of normal speech to high vocal effort. The first topic involves the conversion of normal speech to shouted speech. We employed this conversion in a speaker recognition system with vocal effort mismatch between test and enrollment utterances (shouted speech vs. normal speech). The mismatch causes a degradation of the system's speaker identification performance. As solution, we proposed a SSC system that included a novel spectral mapping, used along a statistical mapping technique, to transform the mel-frequency spectral energies of normal speech enrollment utterances towards their counterparts in shouted speech. We evaluated the proposed solution by comparing speaker identification rates for a state-of-the-art i-vector-based speaker recognition system, with and without applying SSC to the enrollment utterances. Our results showed that applying the proposed SSC pre-processing to the enrollment data improves considerably the speaker identification rates. The second topic involves a normal-to-Lombard speech conversion. We proposed a vocoder-based parametric SSC system to perform the conversion. This system first extracts speech features using the vocoder. Next, a mapping technique, robust to data scarcity, maps the features. Finally, the vocoder synthesizes the mapped features into speech. We used two vocoders in the conversion system, for comparison: a glottal vocoder and the widely used STRAIGHT. We assessed the converted speech from the two vocoder cases with two subjective listening tests that measured similarity to Lombard speech and naturalness. The similarity subjective test showed that, for both vocoder cases, our proposed SSC system was able to convert normal speech to Lombard speech. The naturalness subjective test showed that the converted samples using the glottal vocoder were clearly more natural than those obtained with STRAIGHT

    A cross-lingual adaptation approach for rapid development of speech recognizers for learning disabled users

    Get PDF
    Building a voice-operated system for learning disabled users is a difficult task that requires a considerable amount of time and effort. Due to the wide spectrum of disabilities and their different related phonopathies, most approaches available are targeted to a specific pathology. This may improve their accuracy for some users, but makes them unsuitable for others. In this paper, we present a cross-lingual approach to adapt a general-purpose modular speech recognizer for learning disabled people. The main advantage of this approach is that it allows rapid and cost-effective development by taking the already built speech recognition engine and its modules, and utilizing existing resources for standard speech in different languages for the recognition of the users’ atypical voices. Although the recognizers built with the proposed technique obtain lower accuracy rates than those trained for specific pathologies, they can be used by a wide population and developed more rapidly, which makes it possible to design various types of speech-based applications accessible to learning disabled users.This research was supported by the project ‘Favoreciendo la vida autónoma de discapacitados intelectuales con problemas de comunicación oral mediante interfaces personalizados de reconocimiento automático del habla’, financed by the Centre of Initiatives for Development Cooperation (Centro de Iniciativas de Cooperación al Desarrollo, CICODE), University of Granada, Spain. This research was supported by the Student Grant Scheme 2014 (SGS) at the Technical University of Liberec
    corecore