502 research outputs found

    Use of Navigation Beacons to Support Lunar Vehicle Operations

    Get PDF
    To support a wide variety of lunar missions in a condensed regime, solutions are needed outside of the use of Earth-based orbit determination. This research presents an alternate approach to in-situ navigation through the use of beacons, similar to that used on Earth as well as under technology development efforts. An overview of the current state of navigation aids included as well as discussion of the Lunar Node 1 payload being built at NASA/Marshall Space Flight Center. Expected navigation results of this beacon payload for planned operation from the lunar surface are provided. Applications of navigation beacons to multiple stages of the proposed human lunar landing architecture are given, with initial analysis showing performance gains from the use of this technology. This work provides a starting point for continued analysis and design, laying out the foundation of how navigation beacons can be incorporated into the architecture to enable continued analysis, design, and future expanded capability

    Navigation Requirements Development and Performance Assessment of a Martian Ascent Vehicle

    Get PDF
    To support development of Martian Ascent Vehicles, analysis tools are needed to support the development of Guidance, Navigation, and Control requirements. This paper presents a focused approach to Navigation analysis to capture development of requirements on initial state knowledge and inertial sensor capabilities. A simulation and analysis framework was used to assess the capability of a range of sensors to operate inertially along a range of launch trajectories. The baseline Martian Ascent Vehicle was used as the input for optimizing a set of trajectories from each launch site. These trajectories were used to perform Monte Carlo analysis dispersing error sensor terms and their effects on integrated vehicle performance. Additionally, this paper provides insight into the use of optical navigation techniques to assess state determination and the potential to use observations of local extraplanetary bodies to estimate state. This paper provides an initial level of performance assessment of navigation components to support continued requirements development of a Martian Ascent Vehicle with applications to both crew and sample return missions

    Spacecraft guidance, navigation, and control requirements for an intelligent plug-n-play avionics (PAPA) architecture

    Get PDF
    The objective of this research is to design an intelligent plug-n-play avionics system that provides a reconfigurable platform for supporting the guidance, navigation and control (GN&C) requirements for different elements of the space exploration mission. The focus of this study is to look at the specific requirements for a spacecraft that needs to go from earth to moon and back. In this regard we will identify the different GN&C problems in various phases of flight that need to be addressed for designing such a plug-n-play avionics system. The Apollo and the Space Shuttle programs provide rich literature in terms of understanding some of the general GN&C requirements for a space vehicle. The relevant literature is reviewed which helps in narrowing down the different GN&C algorithms that need to be supported along with their individual requirements

    Use of Unmanned Aerial Systems in Civil Applications

    Get PDF
    Interest in drones has been exponentially growing in the last ten years and these machines are often presented as the optimal solution in a huge number of civil applications (monitoring, agriculture, emergency management etc). However the promises still do not match the data coming from the consumer market, suggesting that the only big field in which the use of small unmanned aerial vehicles is actually profitable is the video-makers’ one. This may be explained partly with the strong limits imposed by existing (and often "obsolete") national regulations, but also - and pheraps mainly - with the lack of real autonomy. The vast majority of vehicles on the market nowadays are infact autonomous only in the sense that they are able to follow a pre-determined list of latitude-longitude-altitude coordinates. The aim of this thesis is to demonstrate that complete autonomy for UAVs can be achieved only with a performing control, reliable and flexible planning platforms and strong perception capabilities; these topics are introduced and discussed by presenting the results of the main research activities performed by the candidate in the last three years which have resulted in 1) the design, integration and control of a test bed for validating and benchmarking visual-based algorithm for space applications; 2) the implementation of a cloud-based platform for multi-agent mission planning; 3) the on-board use of a multi-sensor fusion framework based on an Extended Kalman Filter architecture

    Robust vision based slope estimation and rocks detection for autonomous space landers

    Get PDF
    As future robotic surface exploration missions to other planets, moons and asteroids become more ambitious in their science goals, there is a rapidly growing need to significantly enhance the capabilities of entry, descent and landing technology such that landings can be carried out with pin-point accuracy at previously inaccessible sites of high scientific value. As a consequence of the extreme uncertainty in touch-down locations of current missions and the absence of any effective hazard detection and avoidance capabilities, mission designers must exercise extreme caution when selecting candidate landing sites. The entire landing uncertainty footprint must be placed completely within a region of relatively flat and hazard free terrain in order to minimise the risk of mission ending damage to the spacecraft at touchdown. Consequently, vast numbers of scientifically rich landing sites must be rejected in favour of safer alternatives that may not offer the same level of scientific opportunity. The majority of truly scientifically interesting locations on planetary surfaces are rarely found in such hazard free and easily accessible locations, and so goals have been set for a number of advanced capabilities of future entry, descent and landing technology. Key amongst these is the ability to reliably detect and safely avoid all mission critical surface hazards in the area surrounding a pre-selected landing location. This thesis investigates techniques for the use of a single camera system as the primary sensor in the preliminary development of a hazard detection system that is capable of supporting pin-point landing operations for next generation robotic planetary landing craft. The requirements for such a system have been stated as the ability to detect slopes greater than 5 degrees and surface objects greater than 30cm in diameter. The primary contribution in this thesis, aimed at achieving these goals, is the development of a feature-based,self-initialising, fully adaptive structure from motion (SFM) algorithm based on a robust square-root unscented Kalman filtering framework and the fusion of the resulting SFM scene structure estimates with a sophisticated shape from shading (SFS) algorithm that has the potential to produce very dense and highly accurate digital elevation models (DEMs) that possess sufficient resolution to achieve the sensing accuracy required by next generation landers. Such a system is capable of adapting to potential changes in the external noise environment that may result from intermittent and varying rocket motor thrust and/or sudden turbulence during descent, which may translate to variations in the vibrations experienced by the platform and introduce varying levels of motion blur that will affect the accuracy of image feature tracking algorithms. Accurate scene structure estimates have been obtained using this system from both real and synthetic descent imagery, allowing for the production of accurate DEMs. While some further work would be required in order to produce DEMs that possess the resolution and accuracy needed to determine slopes and the presence of small objects such as rocks at the levels of accuracy required, this thesis presents a very strong foundation upon which to build and goes a long way towards developing a highly robust and accurate solution

    Large-area visually augmented navigation for autonomous underwater vehicles

    Get PDF
    Submitted to the Joint Program in Applied Ocean Science & Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2005This thesis describes a vision-based, large-area, simultaneous localization and mapping (SLAM) algorithm that respects the low-overlap imagery constraints typical of autonomous underwater vehicles (AUVs) while exploiting the inertial sensor information that is routinely available on such platforms. We adopt a systems-level approach exploiting the complementary aspects of inertial sensing and visual perception from a calibrated pose-instrumented platform. This systems-level strategy yields a robust solution to underwater imaging that overcomes many of the unique challenges of a marine environment (e.g., unstructured terrain, low-overlap imagery, moving light source). Our large-area SLAM algorithm recursively incorporates relative-pose constraints using a view-based representation that exploits exact sparsity in the Gaussian canonical form. This sparsity allows for efficient O(n) update complexity in the number of images composing the view-based map by utilizing recent multilevel relaxation techniques. We show that our algorithmic formulation is inherently sparse unlike other feature-based canonical SLAM algorithms, which impose sparseness via pruning approximations. In particular, we investigate the sparsification methodology employed by sparse extended information filters (SEIFs) and offer new insight as to why, and how, its approximation can lead to inconsistencies in the estimated state errors. Lastly, we present a novel algorithm for efficiently extracting consistent marginal covariances useful for data association from the information matrix. In summary, this thesis advances the current state-of-the-art in underwater visual navigation by demonstrating end-to-end automatic processing of the largest visually navigated dataset to date using data collected from a survey of the RMS Titanic (path length over 3 km and 3100 m2 of mapped area). This accomplishment embodies the summed contributions of this thesis to several current SLAM research issues including scalability, 6 degree of freedom motion, unstructured environments, and visual perception.This work was funded in part by the CenSSIS ERC of the National Science Foundation under grant EEC-9986821, in part by the Woods Hole Oceanographic Institution through a grant from the Penzance Foundation, and in part by a NDSEG Fellowship awarded through the Department of Defense

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    Cooperative localization for autonomous underwater vehicles

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2009Self-localization of an underwater vehicle is particularly challenging due to the absence of Global Positioning System (GPS) reception or features at known positions that could otherwise have been used for position computation. Thus Autonomous Underwater Vehicle (AUV) applications typically require the pre-deployment of a set of beacons. This thesis examines the scenario in which the members of a group of AUVs exchange navigation information with one another so as to improve their individual position estimates. We describe how the underwater environment poses unique challenges to vehicle navigation not encountered in other environments in which robots operate and how cooperation can improve the performance of self-localization. As intra-vehicle communication is crucial to cooperation, we also address the constraints of the communication channel and the effect that these constraints have on the design of cooperation strategies. The classical approaches to underwater self-localization of a single vehicle, as well as more recently developed techniques are presented. We then examine how methods used for cooperating land-vehicles can be transferred to the underwater domain. An algorithm for distributed self-localization, which is designed to take the specific characteristics of the environment into account, is proposed. We also address how correlated position estimates of cooperating vehicles can lead to overconfidence in individual position estimates. Finally, key to any successful cooperative navigation strategy is the incorporation of the relative positioning between vehicles. The performance of localization algorithms with different geometries is analyzed and a distributed algorithm for the dynamic positioning of vehicles, which serve as dedicated navigation beacons for a fleet of AUVs, is proposed.This work was funded by Office of Naval Research grants N00014-97-1-0202, N00014-05-1-0255, N00014-02-C-0210, N00014-07-1-1102 and the ASAP MURI program led by Naomi Leonard of Princeton University

    Map-Based Localization for Unmanned Aerial Vehicle Navigation

    Get PDF
    Unmanned Aerial Vehicles (UAVs) require precise pose estimation when navigating in indoor and GNSS-denied / GNSS-degraded outdoor environments. The possibility of crashing in these environments is high, as spaces are confined, with many moving obstacles. There are many solutions for localization in GNSS-denied environments, and many different technologies are used. Common solutions involve setting up or using existing infrastructure, such as beacons, Wi-Fi, or surveyed targets. These solutions were avoided because the cost should be proportional to the number of users, not the coverage area. Heavy and expensive sensors, for example a high-end IMU, were also avoided. Given these requirements, a camera-based localization solution was selected for the sensor pose estimation. Several camera-based localization approaches were investigated. Map-based localization methods were shown to be the most efficient because they close loops using a pre-existing map, thus the amount of data and the amount of time spent collecting data are reduced as there is no need to re-observe the same areas multiple times. This dissertation proposes a solution to address the task of fully localizing a monocular camera onboard a UAV with respect to a known environment (i.e., it is assumed that a 3D model of the environment is available) for the purpose of navigation for UAVs in structured environments. Incremental map-based localization involves tracking a map through an image sequence. When the map is a 3D model, this task is referred to as model-based tracking. A by-product of the tracker is the relative 3D pose (position and orientation) between the camera and the object being tracked. State-of-the-art solutions advocate that tracking geometry is more robust than tracking image texture because edges are more invariant to changes in object appearance and lighting. However, model-based trackers have been limited to tracking small simple objects in small environments. An assessment was performed in tracking larger, more complex building models, in larger environments. A state-of-the art model-based tracker called ViSP (Visual Servoing Platform) was applied in tracking outdoor and indoor buildings using a UAVs low-cost camera. The assessment revealed weaknesses at large scales. Specifically, ViSP failed when tracking was lost, and needed to be manually re-initialized. Failure occurred when there was a lack of model features in the cameras field of view, and because of rapid camera motion. Experiments revealed that ViSP achieved positional accuracies similar to single point positioning solutions obtained from single-frequency (L1) GPS observations standard deviations around 10 metres. These errors were considered to be large, considering the geometric accuracy of the 3D model used in the experiments was 10 to 40 cm. The first contribution of this dissertation proposes to increase the performance of the localization system by combining ViSP with map-building incremental localization, also referred to as simultaneous localization and mapping (SLAM). Experimental results in both indoor and outdoor environments show sub-metre positional accuracies were achieved, while reducing the number of tracking losses throughout the image sequence. It is shown that by integrating model-based tracking with SLAM, not only does SLAM improve model tracking performance, but the model-based tracker alleviates the computational expense of SLAMs loop closing procedure to improve runtime performance. Experiments also revealed that ViSP was unable to handle occlusions when a complete 3D building model was used, resulting in large errors in its pose estimates. The second contribution of this dissertation is a novel map-based incremental localization algorithm that improves tracking performance, and increases pose estimation accuracies from ViSP. The novelty of this algorithm is the implementation of an efficient matching process that identifies corresponding linear features from the UAVs RGB image data and a large, complex, and untextured 3D model. The proposed model-based tracker improved positional accuracies from 10 m (obtained with ViSP) to 46 cm in outdoor environments, and improved from an unattainable result using VISP to 2 cm positional accuracies in large indoor environments. The main disadvantage of any incremental algorithm is that it requires the camera pose of the first frame. Initialization is often a manual process. The third contribution of this dissertation is a map-based absolute localization algorithm that automatically estimates the camera pose when no prior pose information is available. The method benefits from vertical line matching to accomplish a registration procedure of the reference model views with a set of initial input images via geometric hashing. Results demonstrate that sub-metre positional accuracies were achieved and a proposed enhancement of conventional geometric hashing produced more correct matches - 75% of the correct matches were identified, compared to 11%. Further the number of incorrect matches was reduced by 80%
    • …
    corecore