10,345 research outputs found

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Smart working technologies in industry 4.0 : contributions to different manufacturing activities and workers’ skills

    Get PDF
    A Indústria 4.0 é considerada a quarta revolução industrial porque utiliza uma ampla integração de tecnologias de informação e de operação na fabricação industrial. Apesar dessa perspectiva tecnológica, diversos estudos vêm evidenciando a importância de considerar o fator humano para o desenvolvimento de um sistema de manufatura inteligente. Nesse sentido, a dimensão denominada como Smart Working precisa ser melhor investigada, uma vez que entender como as tecnologias afetam os trabalhadores e as habilidades desses são cruciais para o bom desempenho das fábricas. Em razão disso, o objetivo desta dissertação foi entender como as Smart Working Technologies (SWT) podem contribuir para as atividades e as habilidades dos trabalhadores da manufatura. Para tanto, primeiramente foi realizada uma análise abrangente da literatura para identificar as SWT e seus impactos nas capacidades dos trabalhadores em suas atividades de manufatura. Deste modo, foram analisados 80 artigos que relacionam as SWT em oito atividades de manufatura. Posteriormente, foi selecionada uma das SWT mais relevantes conforme a literatura, os robôs colaborativos, para identificar os efeitos das tecnologias nas habilidades dos trabalhadores. Deste modo, foram analisados 138 casos de aplicação reportados por uma das empresas fornecedoras líderes mundiais, bem como três entrevistas com empresas adotantes da tecnologia. Os resultados apontam que existem 15 SWT que podem ser implementadas nas atividades de manufatura e relacionadas às capacidades dos trabalhadores. Além disso, os resultados também apontam que podem existir quatro efeitos das SWT nas habilidades dos trabalhadores. Estes achados demonstram que de acordo com a estratégia da empresa uma SWT pode impactar de diferentes formas os trabalhadores.Industry 4.0 is considered the fourth industrial revolution because it uses a broad integration of information and operating technologies in industrial manufacturing. Despite this technological perspective, several studies have highlighted the importance of considering the human factor to develop a smart manufacturing system. In this sense, the Smart Working dimension needs to be further investigated since understanding how technologies affect workers and their skills are crucial for factories' good performance. Therefore, the objective of this dissertation was to understand how Smart Working Technologies (SWT) can contribute to the activities and skills of manufacturing workers. To this end, firstly a systematic literature review was carried out to identify SWTs and their impacts on workers' capabilities in their manufacturing activities. Thus, 80 articles relating to SWT in eight manufacturing activities were analyzed. Subsequently, one of the most relevant SWTs according to the literature, collaborative robots, was selected to identify the effects of technologies on workers' skills. In this way, 138 application cases reported by one of the world's leading supplier companies were analyzed, as well as three interviews with companies that adopted the technology. The results show that there are 15 SWT that can be implemented in manufacturing activities and related to workers' capabilities. In addition, the results also point out that there may be four effects of SWT on workers' skills. According to the company's strategy, these findings demonstrate that an SWT can impact workers in different ways

    A cross‐sectorial review of industrial best practices and case histories on Industry 4.0 technologies

    Get PDF
    Industry 4.0 (I4.0) was introduced in 2011, and its advanced enablers strongly affect industrial practices. In the current literature, while several papers offer general reviews on the topic, contributions exploring the evidences coming from the implementation of I4.0 in multi-sector Small and Medium Enterprises (SMEs) and large enterprises are few and expected. To address this gap, a comprehensive review of the main I4.0 enabling technologies is conducted, focusing on implementation experiences in companies belonging to different sectors. Forty (40) real case studies are analyzed and compared. The results show that 63% of the identified applications involve large enterprises in the transport sector, that is, automotive, aeronautics, and railway, adopting a structured set of enabling technologies. SMEs engaged in I4.0 projects primarily belong to the mechanical engineering sector, and 37% of such projects deals with the preliminary feasibility analysis of introducing a single enabling technology. Conclusions and trends guide researchers and practitioners in understanding the implementation level of I4.0 technologies

    Lean manual assembly 4.0: A systematic review

    Get PDF
    In a demand context of mass customization, shifting towards the mass personalization of products, assembly operations face the trade-off between highly productive automated systems and flexible manual operators. Novel digital technologies—conceptualized as Industry 4.0—suggest the possibility of simultaneously achieving superior productivity and flexibility. This article aims to address how Industry 4.0 technologies could improve the productivity, flexibility and quality of assembly operations. A systematic literature review was carried out, including 234 peer-reviewed articles from 2010–2020. As a result, the analysis was structured addressing four sets of research questions regarding (1) assembly for mass customization; (2) Industry 4.0 and performance evaluation; (3) Lean production as a starting point for smart factories, and (4) the implications of Industry 4.0 for people in assembly operations. It was found that mass customization brings great complexity that needs to be addressed at different levels from a holistic point of view; that Industry 4.0 offers powerful tools to achieve superior productivity and flexibility in assembly; that Lean is a great starting point for implementing such changes; and that people need to be considered central to Assembly 4.0. Developing methodologies for implementing Industry 4.0 to achieve specific business goals remains an open research topic

    Industry 4.0 technologies for manufacturing sustainability: A systematic review and future research directions

    Get PDF
    Recent developments in manufacturing processes and automation have led to the new industrial revolution termed “Industry 4.0”. Industry 4.0 can be considered as a broad domain which includes: data management, manufacturing competitiveness, production processes and efficiency. The term Industry 4.0 includes a variety of key enabling technologies i.e., cyber physical systems, Internet of Things, artificial intelligence, big data analytics and digital twins which can be considered as the major contributors to automated and digital manufacturing environments. Sustainability can be considered as the core of business strategy which is highlighted in the United Nations (UN) Sustainability 2030 agenda and includes smart manufacturing, energy efficient buildings and low-impact industrialization. Industry 4.0 technologies help to achieve sustainability in business practices. However, very limited studies reported about the extensive reviews on these two research areas. This study uses a systematic literature review approach to find out the current research progress and future research potential of Industry 4.0 technologies to achieve manufacturing sustainability. The role and impact of different Industry 4.0 technologies for manufacturing sustainability is discussed in detail. The findings of this study provide new research scopes and future research directions in different research areas of Industry 4.0 which will be valuable for industry and academia in order to achieve manufacturing sustainability with Industry 4.0 technologies

    Industry 4.0 and human factor: How is technology changing the role of the maintenance operator?

    Get PDF
    Abstract Industry 4.0 is revolutionizing not only the manufacturing industry but also maintenance strategies. As consequence of the introduction of Industry 4.0 technologies, new skills are demanded to maintenance operators that has to be able to interact, as instance, with Cyber Physical Systems and robots. In this paper, we first investigate the state-of-the-art of Industry 4.0 technologies that are transforming operations and production management and finally we discuss how the role of maintenance operators is changed in a such digitalized environment. We found that, the maintenance Operator 4.0 should be able to find relevant information and predict events by a proper use of Big Data analytics, in addition to the ability of interacting with computers, digital databases and robots. Finally, the ability to rapidly adapt his skills to innovations is also strongly demanded
    corecore