12 research outputs found

    Realistic Volume Rendering with Environment-Synced Illumination in Mixed Reality

    Full text link
    Interactive volume visualization using a mixed reality (MR) system helps provide users with an intuitive spatial perception of volumetric data. Due to sophisticated requirements of user interaction and vision when using MR head-mounted display (HMD) devices, the conflict between the realisticness and efficiency of direct volume rendering (DVR) is yet to be resolved. In this paper, a new MR visualization framework that supports interactive realistic DVR is proposed. An efficient illumination estimation method is used to identify the high dynamic range (HDR) environment illumination captured using a panorama camera. To improve the visual quality of Monte Carlo-based DVR, a new spatio-temporal denoising algorithm is designed. Based on a reprojection strategy, it makes full use of temporal coherence between adjacent frames and spatial coherence between the two screens of an HMD to optimize MR rendering quality. Several MR development modules are also developed for related devices to efficiently and stably display the DVR results in an MR HMD. Experimental results demonstrate that our framework can better support immersive and intuitive user perception during MR viewing than existing MR solutions.Comment: 6 pages, 6 figure

    Using a Combination of PID Control and Kalman Filter to Design of IoT-based Telepresence Self-balancing Robots during COVID-19 Pandemic

    Get PDF
    COVID-19 is a very dangerous respiratory disease that can spread quickly through the air. Doctors, nurses, and medical personnel need protective clothing and are very careful in treating COVID-19 patients to avoid getting infected with the COVID-19 virus. Hence, a medical telepresence robot, which resembles a humanoid robot, is necessary to treat COVID-19 patients. The proposed self-balancing COVID-19 medical telepresence robot is a medical robot that handles COVID-19 patients, which resembles a stand-alone humanoid soccer robot with two wheels that can maneuver freely in hospital hallways. The proposed robot design has some control problems; it requires steady body positioning and is subjected to disturbance. A control method that functions to find the stability value such that the system response can reach the set-point is required to control the robot's stability and repel disturbances; this is known as disturbance rejection control. This study aimed to control the robot using a combination of Proportional-Integral-Derivative (PID) control and a Kalman filter. Mathematical equations were required to obtain a model of the robot's characteristics. The state-space model was derived from the self-balancing robot's mathematical equation. Since a PID control technique was used to keep the robot balanced, this state-space model was converted into a transfer function model. The second Ziegler-Nichols's rule oscillation method was used to tune the PID parameters. The values of the amplifier constants obtained were Kp=31.002, Ki=5.167, and Kd=125.992128. The robot was designed to be able to maintain its balance for more than one hour by using constant tuning, even when an external disturbance is applied to it. Doi: 10.28991/esj-2021-SP1-016 Full Text: PD

    Collaborative Work Enabled by Immersive Environments

    Get PDF

    Collaborative Work Enabled by Immersive Environments

    Get PDF
    Digital transformation facilitates new methods for remote collaboration while shaping a new understanding of working together. In this chapter, we consider global collaboration in the context of digital transformation, discuss the role of Collaborative Virtual Environments (CVEs) within the transformation process, present an overview of the state of CVEs and go into more detail on significant challenges in CVEs by providing recent approaches from research

    Impact of Imaging and Distance Perception in VR Immersive Visual Experience

    Get PDF
    Virtual reality (VR) headsets have evolved to include unprecedented viewing quality. Meanwhile, they have become lightweight, wireless, and low-cost, which has opened to new applications and a much wider audience. VR headsets can now provide users with greater understanding of events and accuracy of observation, making decision-making faster and more effective. However, the spread of immersive technologies has shown a slow take-up, with the adoption of virtual reality limited to a few applications, typically related to entertainment. This reluctance appears to be due to the often-necessary change of operating paradigm and some scepticism towards the "VR advantage". The need therefore arises to evaluate the contribution that a VR system can make to user performance, for example to monitoring and decision-making. This will help system designers understand when immersive technologies can be proposed to replace or complement standard display systems such as a desktop monitor. In parallel to the VR headsets evolution there has been that of 360 cameras, which are now capable to instantly acquire photographs and videos in stereoscopic 3D (S3D) modality, with very high resolutions. 360° images are innately suited to VR headsets, where the captured view can be observed and explored through the natural rotation of the head. Acquired views can even be experienced and navigated from the inside as they are captured. The combination of omnidirectional images and VR headsets has opened to a new way of creating immersive visual representations. We call it: photo-based VR. This represents a new methodology that combines traditional model-based rendering with high-quality omnidirectional texture-mapping. Photo-based VR is particularly suitable for applications related to remote visits and realistic scene reconstruction, useful for monitoring and surveillance systems, control panels and operator training. The presented PhD study investigates the potential of photo-based VR representations. It starts by evaluating the role of immersion and user’s performance in today's graphical visual experience, to then use it as a reference to develop and evaluate new photo-based VR solutions. With the current literature on photo-based VR experience and associated user performance being very limited, this study builds new knowledge from the proposed assessments. We conduct five user studies on a few representative applications examining how visual representations can be affected by system factors (camera and display related) and how it can influence human factors (such as realism, presence, and emotions). Particular attention is paid to realistic depth perception, to support which we develop target solutions for photo-based VR. They are intended to provide users with a correct perception of space dimension and objects size. We call it: true-dimensional visualization. The presented work contributes to unexplored fields including photo-based VR and true-dimensional visualization, offering immersive system designers a thorough comprehension of the benefits, potential, and type of applications in which these new methods can make the difference. This thesis manuscript and its findings have been partly presented in scientific publications. In particular, five conference papers on Springer and the IEEE symposia, [1], [2], [3], [4], [5], and one journal article in an IEEE periodical [6], have been published

    Survey on 6G Frontiers: Trends, Applications, Requirements, Technologies and Future Research

    Get PDF
    Emerging applications such as Internet of Everything, Holographic Telepresence, collaborative robots, and space and deep-sea tourism are already highlighting the limitations of existing fifth-generation (5G) mobile networks. These limitations are in terms of data-rate, latency, reliability, availability, processing, connection density and global coverage, spanning over ground, underwater and space. The sixth-generation (6G) of mobile networks are expected to burgeon in the coming decade to address these limitations. The development of 6G vision, applications, technologies and standards has already become a popular research theme in academia and the industry. In this paper, we provide a comprehensive survey of the current developments towards 6G. We highlight the societal and technological trends that initiate the drive towards 6G. Emerging applications to realize the demands raised by 6G driving trends are discussed subsequently. We also elaborate the requirements that are necessary to realize the 6G applications. Then we present the key enabling technologies in detail. We also outline current research projects and activities including standardization efforts towards the development of 6G. Finally, we summarize lessons learned from state-of-the-art research and discuss technical challenges that would shed a new light on future research directions towards 6G

    Holistic Approach for Authoring Immersive and Smart Environments for the Integration in Engineering Education

    Get PDF
    Die vierte industrielle Revolution und der rasante technologische Fortschritt stellen die etablierten Bildungsstrukturen und traditionellen Bildungspraktiken in Frage. Besonders in der Ingenieurausbildung erfordert das lebenslange Lernen, dass man sein Wissen und seine Fähigkeiten ständig verbessern muss, um auf dem Arbeitsmarkt wettbewerbsfähig zu sein. Es besteht die Notwendigkeit eines Paradigmenwechsels in der Bildung und Ausbildung hin zu neuen Technologien wie virtueller Realität und künstlicher Intelligenz. Die Einbeziehung dieser Technologien in ein Bildungsprogramm ist jedoch nicht so einfach wie die Investition in neue Geräte oder Software. Es müssen neue Bildungsprogramme geschaffen oder alte von Grund auf umgestaltet werden. Dabei handelt es sich um komplexe und umfangreiche Prozesse, die Entscheidungsfindung, Design und Entwicklung umfassen. Diese sind mit erheblichen Herausforderungen verbunden, die die Überwindung vieler Hindernisse erfordert. Diese Arbeit stellt eine Methodologie vor, die sich mit den Herausforderungen der Nutzung von Virtueller Realität und Künstlicher Intelligenz als Schlüsseltechnologien in der Ingenieurausbildung befasst. Die Methodologie hat zum Ziel, die Hauptakteure anzuleiten, um den Lernprozess zu verbessern, sowie neuartige und effiziente Lernerfahrungen zu ermöglichen. Da jedes Bildungsprogramm einzigartig ist, folgt die Methodik einem ganzheitlichen Ansatz, um die Erstellung maßgeschneiderter Kurse oder Ausbildungen zu unterstützen. Zu diesem Zweck werden die Wechselwirkung zwischen verschiedenen Aspekten berücksichtigt. Diese werden in den drei Ebenen - Bildung, Technologie und Management zusammengefasst. Die Methodik betont den Einfluss der Technologien auf die Unterrichtsgestaltung und die Managementprozesse. Sie liefert Methoden zur Entscheidungsfindung auf der Grundlage einer umfassenden pädagogischen, technologischen und wirtschaftlichen Analyse. Darüber hinaus unterstützt sie den Prozess der didaktischen Gestaltung durch eine umfassende Kategorisierung der Vor- und Nachteile immersiver Lernumgebungen und zeigt auf, welche ihrer Eigenschaften den Lernprozess verbessern können. Ein besonderer Schwerpunkt liegt auf der systematischen Gestaltung immersiver Systeme und der effizienten Erstellung immersiver Anwendungen unter Verwendung von Methoden aus dem Bereich der künstlichen Intelligenz. Es werden vier Anwendungsfälle mit verschiedenen Ausbildungsprogrammen vorgestellt, um die Methodik zu validieren. Jedes Bildungsprogramm hat seine eigenen Ziele und in Kombination decken sie die Validierung aller Ebenen der Methodik ab. Die Methodik wurde iterativ mit jedem Validierungsprojekt weiterentwickelt und verbessert. Die Ergebnisse zeigen, dass die Methodik zuverlässig und auf viele Szenarien sowie auf die meisten Bildungsstufen und Bereiche übertragbar ist. Durch die Anwendung der in dieser Arbeit vorgestellten Methoden können Interessengruppen immersiven Technologien effektiv und effizient in ihre Unterrichtspraxis integrieren. Darüber hinaus können sie auf der Grundlage der vorgeschlagenen Ansätze Aufwand, Zeit und Kosten für die Planung, Entwicklung und Wartung der immersiven Systeme sparen. Die Technologie verlagert die Rolle des Lehrenden in eine Moderatorrolle. Außerdem bekommen die Lehrkräfte die Möglichkeit die Lernenden individuell zu unterstützen und sich auf deren kognitive Fähigkeiten höherer Ordnung zu konzentrieren. Als Hauptergebnis erhalten die Lernenden eine angemessene, qualitativ hochwertige und zeitgemäße Ausbildung, die sie qualifizierter, erfolgreicher und zufriedener macht

    Conceitos e métodos para apoio ao desenvolvimento e avaliação de colaboração remota utilizando realidade aumentada

    Get PDF
    Remote Collaboration using Augmented Reality (AR) shows great potential to establish a common ground in physically distributed scenarios where team-members need to achieve a shared goal. However, most research efforts in this field have been devoted to experiment with the enabling technology and propose methods to support its development. As the field evolves, evaluation and characterization of the collaborative process become an essential, but difficult endeavor, to better understand the contributions of AR. In this thesis, we conducted a critical analysis to identify the main limitations and opportunities of the field, while situating its maturity and proposing a roadmap of important research actions. Next, a human-centered design methodology was adopted, involving industrial partners to probe how AR could support their needs during remote maintenance. These outcomes were combined with literature methods into an AR-prototype and its evaluation was performed through a user study. From this, it became clear the necessity to perform a deep reflection in order to better understand the dimensions that influence and must/should be considered in Collaborative AR. Hence, a conceptual model and a humancentered taxonomy were proposed to foster systematization of perspectives. Based on the model proposed, an evaluation framework for contextualized data gathering and analysis was developed, allowing support the design and performance of distributed evaluations in a more informed and complete manner. To instantiate this vision, the CAPTURE toolkit was created, providing an additional perspective based on selected dimensions of collaboration and pre-defined measurements to obtain “in situ” data about them, which can be analyzed using an integrated visualization dashboard. The toolkit successfully supported evaluations of several team-members during tasks of remote maintenance mediated by AR. Thus, showing its versatility and potential in eliciting a comprehensive characterization of the added value of AR in real-life situations, establishing itself as a generalpurpose solution, potentially applicable to a wider range of collaborative scenarios.Colaboração Remota utilizando Realidade Aumentada (RA) apresenta um enorme potencial para estabelecer um entendimento comum em cenários onde membros de uma equipa fisicamente distribuídos precisam de atingir um objetivo comum. No entanto, a maioria dos esforços de investigação tem-se focado nos aspetos tecnológicos, em fazer experiências e propor métodos para apoiar seu desenvolvimento. À medida que a área evolui, a avaliação e caracterização do processo colaborativo tornam-se um esforço essencial, mas difícil, para compreender as contribuições da RA. Nesta dissertação, realizámos uma análise crítica para identificar as principais limitações e oportunidades da área, ao mesmo tempo em que situámos a sua maturidade e propomos um mapa com direções de investigação importantes. De seguida, foi adotada uma metodologia de Design Centrado no Humano, envolvendo parceiros industriais de forma a compreender como a RA poderia responder às suas necessidades em manutenção remota. Estes resultados foram combinados com métodos da literatura num protótipo de RA e a sua avaliação foi realizada com um caso de estudo. Ficou então clara a necessidade de realizar uma reflexão profunda para melhor compreender as dimensões que influenciam e devem ser consideradas na RA Colaborativa. Foram então propostos um modelo conceptual e uma taxonomia centrada no ser humano para promover a sistematização de perspetivas. Com base no modelo proposto, foi desenvolvido um framework de avaliação para recolha e análise de dados contextualizados, permitindo apoiar o desenho e a realização de avaliações distribuídas de forma mais informada e completa. Para instanciar esta visão, o CAPTURE toolkit foi criado, fornecendo uma perspetiva adicional com base em dimensões de colaboração e medidas predefinidas para obter dados in situ, que podem ser analisados utilizando o painel de visualização integrado. O toolkit permitiu avaliar com sucesso vários colaboradores durante a realização de tarefas de manutenção remota apoiada por RA, permitindo mostrar a sua versatilidade e potencial em obter uma caracterização abrangente do valor acrescentado da RA em situações da vida real. Sendo assim, estabelece-se como uma solução genérica, potencialmente aplicável a uma gama diversificada de cenários colaborativos.Programa Doutoral em Engenharia Informátic
    corecore