897 research outputs found

    Depth Augmented Omnidirectional Stereo for 6-DoF VR Photography

    Get PDF

    From ”Sapienza” to “Sapienza, State Archives in Rome”. A looping effect bringing back to the original source communication and culture by innovative and low cost 3D surveying, imaging systems and GIS applications

    Get PDF
    Applicazione di tecnologie mensorie integrate Low Cost,web GIS,applicazione di tecniche di Computational photography per la comunicazione e condivisione dei dati, sistemi di Cloud computing.Archiviazione Grandi DatiHigh Quality survey models, realized by multiple Low Cost methods and technologies, as a container to sharing Cultural and Archival Heritage, this is the aim guiding our research, here described in its primary applications. The SAPIENZA building, a XVI century masterpiece that represented the first unified headquarters of University in Rome, plays since year 1936, when the University moved to its newly edified campus, the role of the main venue for the State Archives. By the collaboration of a group of students of the Architecture Faculty, some integrated survey methods were applied on the monument with success. The beginning was the topographic survey, creating a reference on ground and along the monument for the upcoming applications, a GNNS RTK survey followed georeferencing points on the internal courtyard. Dense stereo matching photogrammetry is nowadays an accepted method for generating 3D survey models, accurate and scalable; it often substitutes 3D laser scanning for its low cost, so that it became our choice. Some 360°shots were planned for creating panoramic views of the double portico from the courtyard, plus additional single shots of some lateral spans and of pillars facing the court, as a single operation with a double finality: to create linked panotours with hotspots to web-linked databases, and 3D textured and georeferenced surface models, allowing to study the harmonic proportions of the classical architectural order. The use of free web Gis platforms, to load the work in Google Earth and the realization of low cost 3D prototypes of some representative parts, has been even performed

    Image-Based Rendering Of Real Environments For Virtual Reality

    Get PDF

    Making Exhibitions, Brokering Meaning: Designing new connections across communities of practice

    Get PDF
    New media museum exhibits often see designers representing the research of expert content providers. Despite perceptions that such exhibits provide museum visitors with a greater depth and range of experience, differences in knowledge and practice between designers and content providers can see content development become an unruly, competitive process in which audience experience, digital mediation, visualisation techniques and meaning become contested territory. Drawing on Etienne Wenger’s theory of “communities of practice”, this paper argues that designers’ advocacy for audiences and distance from exhibition content well positions them to broker interdisciplinary goal setting so that exhibitions observe the representational objectives of content providers and meet the needs and preferences of museum visitors. A wide range of design literature already discusses the pragmatic benefits and ethical importance of user-centered design, while the literature on co-design suggests that designed outcomes are more successful if the design process considers the interests of all stakeholders. These discussions can be compelling, but the inherent challenges in engaging others’ perspectives and knowledge in the design process are less acknowledged, Wenger’s ideas on the social dynamics of group enterprise offering designers valuable insights into the actuality of negotiating designed outcomes with non-designer stakeholders. The paper has two main aspects. The first outlines the theory of communities of practice, focusing on the brokering of knowledge and practice between disciplines. This discussion frames an analysis of the design process for two museum exhibitions. Representing an original application of Wenger’s ideas, the discussion recognises the unique role of the designed artifact in brokering information visualization processes, transcending the actions and intentions of individual stakeholders. While accepting there are successful examples of interdisciplinary exchange in various areas of design, the interpretation of examples via Wenger contributes useful principles to the theorisation of co-design with non-designer stakeholders. Keywords: Information visualization; New media museum exhibits; Multidisciplinary projects; Communities of Practice; Brokering; User-centered design; Co-Design; Etienne Wenger</p

    Disparity map generation based on trapezoidal camera architecture for multiview video

    Get PDF
    Visual content acquisition is a strategic functional block of any visual system. Despite its wide possibilities, the arrangement of cameras for the acquisition of good quality visual content for use in multi-view video remains a huge challenge. This paper presents the mathematical description of trapezoidal camera architecture and relationships which facilitate the determination of camera position for visual content acquisition in multi-view video, and depth map generation. The strong point of Trapezoidal Camera Architecture is that it allows for adaptive camera topology by which points within the scene, especially the occluded ones can be optically and geometrically viewed from several different viewpoints either on the edge of the trapezoid or inside it. The concept of maximum independent set, trapezoid characteristics, and the fact that the positions of cameras (with the exception of few) differ in their vertical coordinate description could very well be used to address the issue of occlusion which continues to be a major problem in computer vision with regards to the generation of depth map

    Cuboid-maps for indoor illumination modeling and augmented reality rendering

    Get PDF
    This thesis proposes a novel approach for indoor scene illumination modeling and augmented reality rendering. Our key observation is that an indoor scene is well represented by a set of rectangular spaces, where important illuminants reside on their boundary faces, such as a window on a wall or a ceiling light. Given a perspective image or a panorama and detected rectangular spaces as inputs, we estimate their cuboid shapes, and infer illumination components for each face of the cuboids by a simple convolutional neural architecture. The process turns an image into a set of cuboid environment maps, each of which is a simple extension of a traditional cube-map. For augmented reality rendering, we simply take a linear combination of inferred environment maps and an input image, producing surprisingly realistic illumination effects. This approach is simple and efficient, avoids flickering, and achieves quantitatively more accurate and qualitatively more realistic effects than competing substantially more complicated systems

    OmniPhotos: Casual 360° VR Photography

    Get PDF

    Videos in Context for Telecommunication and Spatial Browsing

    Get PDF
    The research presented in this thesis explores the use of videos embedded in panoramic imagery to transmit spatial and temporal information describing remote environments and their dynamics. Virtual environments (VEs) through which users can explore remote locations are rapidly emerging as a popular medium of presence and remote collaboration. However, capturing visual representation of locations to be used in VEs is usually a tedious process that requires either manual modelling of environments or the employment of specific hardware. Capturing environment dynamics is not straightforward either, and it is usually performed through specific tracking hardware. Similarly, browsing large unstructured video-collections with available tools is difficult, as the abundance of spatial and temporal information makes them hard to comprehend. At the same time, on a spectrum between 3D VEs and 2D images, panoramas lie in between, as they offer the same 2D images accessibility while preserving 3D virtual environments surrounding representation. For this reason, panoramas are an attractive basis for videoconferencing and browsing tools as they can relate several videos temporally and spatially. This research explores methods to acquire, fuse, render and stream data coming from heterogeneous cameras, with the help of panoramic imagery. Three distinct but interrelated questions are addressed. First, the thesis considers how spatially localised video can be used to increase the spatial information transmitted during video mediated communication, and if this improves quality of communication. Second, the research asks whether videos in panoramic context can be used to convey spatial and temporal information of a remote place and the dynamics within, and if this improves users' performance in tasks that require spatio-temporal thinking. Finally, the thesis considers whether there is an impact of display type on reasoning about events within videos in panoramic context. These research questions were investigated over three experiments, covering scenarios common to computer-supported cooperative work and video browsing. To support the investigation, two distinct video+context systems were developed. The first telecommunication experiment compared our videos in context interface with fully-panoramic video and conventional webcam video conferencing in an object placement scenario. The second experiment investigated the impact of videos in panoramic context on quality of spatio-temporal thinking during localization tasks. To support the experiment, a novel interface to video-collection in panoramic context was developed and compared with common video-browsing tools. The final experimental study investigated the impact of display type on reasoning about events. The study explored three adaptations of our video-collection interface to three display types. The overall conclusion is that videos in panoramic context offer a valid solution to spatio-temporal exploration of remote locations. Our approach presents a richer visual representation in terms of space and time than standard tools, showing that providing panoramic contexts to video collections makes spatio-temporal tasks easier. To this end, videos in context are suitable alternative to more difficult, and often expensive solutions. These findings are beneficial to many applications, including teleconferencing, virtual tourism and remote assistance
    • …
    corecore