1,656 research outputs found

    Experimental Control of Flexible Robot Manipulators

    Get PDF

    Nonlinear control for Two-Link flexible manipulator

    Get PDF
    Recently the use of robot manipulators has been increasing in many applications such as medical applications, automobile, construction, manufacturing, military, space, etc. However, current rigid manipulators have high inertia and use actuators with large energy consumption. Moreover, rigid manipulators are slow and have low payload-to arm-mass ratios because link deformation is not allowed. The main advantages of flexible manipulators over rigid manipulators are light in weight, higher speed of operation, larger workspace, smaller actuator, lower energy consumption and lower cost. However, there is no adequate closed-form solutions exist for flexible manipulators. This is mainly because flexible dynamics are modeled with partial differential equations, which give rise to infinite dimensional dynamical systems that are, in general, not possible to represent exactly or efficiently on a computer which makes modeling a challenging task. In addition, if flexibility nature wasn\u27t considered, there will be calculation errors in the calculated torque requirement for the motors and in the calculated position of the end-effecter. As for the control task, it is considered as a complex task since flexible manipulators are non-minimum phase system, under-actuated system and Multi-Input/Multi-Output (MIMO) nonlinear system. This thesis focuses on the development of dynamic formulation model and three control techniques aiming to achieve accurate position control and improving dynamic stability for Two-Link Flexible Manipulators (TLFMs). LQR controller is designed based on the linearized model of the TLFM; however, it is applied on both linearized and nonlinear models. In addition to LQR, Backstepping and Sliding mode controllers are designed as nonlinear control approaches and applied on both the nonlinear model of the TLFM and the physical system. The three developed control techniques are tested through simulation based on the developed dynamic formulation model using MATLAB/SIMULINK. Stability and performance analysis were conducted and tuned to obtain the best results. Then, the performance and stability results obtained through simulation are compared. Finally, the developed control techniques were implemented and analyzed on the 2-DOF Serial Flexible Link Robot experimental system from Quanser and the results are illustrated and compared with that obtained through simulation

    Practice of law in the provisioning of accessibility facilities for person with disabilities in Malaysia

    Get PDF
    Malaysia’s significant changes can be seen clearly through the improvement of social welfare of the disabled and people with disabilities. Although the governments has carried out various policies and provide facilities as well as provision for the disabled but there are still many obstacles encountered by people with disabilities, especially the legal and the accessibility of facilities and services. Therefore, this paper attempts to discuss the practice of law relating of legal procedure particularly for disabled users which affects the movement of these people from one destination to another. This paper discusses the practice of law adopted in the preparation of facilities for disabled people to help them make movement independently. The study was conducted by secondary data to the Malaysia legal and policies for disabled person by comparing with United Kingdom (UK). Malaysia has come out with a strong legal framework for disabled person through People with Disabilities Act 2008 (Act 685). There are several areas in the act that still can be improved to support disabled person

    Control of a Lightweight Flexible Robotic Arm Using Sliding Modes

    Full text link
    This paper presents a robust control scheme for flexible link robotic manipulators, which is based on considering the flexible mechanical structure as a system with slow (rigid) and fast (flexible) modes that can be controlled separately. The rigid dynamics is controlled by means of a robust sliding-mode approach with wellestablished stability properties while an LQR optimal design is adopted for the flexible dynamics. Experimental results show that this composite approach achieves good closed loop tracking properties both for the rigid and the flexible dynamics

    Precise tip positioning of a flexible manipulator using resonant control

    Get PDF
    A single-link flexible manipulator is fabricated to represent a typical flexible robotic arm. This flexible manipulator is modeled as a SIMO system with the motor-torque as the input and the hub angle and the tip position as the outputs. The two transfer functions are identified using a frequency-domain system identification method. A feedback loop around the hub angle response with a resonant controller is designed to damp the resonant modes. A high gain integral controller is also designed to achieve zero steady-state error in the tip position response. Experiments are performed to demonstrate the effectiveness of the proposed control scheme

    Control of Flexible Manipulators. Theory and Practice

    Get PDF

    Flexible joint robotic manipulator: Modeling and design of robust control law

    Get PDF
    This paper presents modeling and sophisticated control of a single Degree Of Freedom (DOF) flexible robotic arm. The derived model is based on Euler-Lagrange approach while the first and second order (super twisting) Sliding Mode Control (SMC) is proposed as a non-linear control strategy. The control laws are subjected to various test inputs including step and sinusoids to demonstrate their tracking efficiency by observing transient and steady state behaviours. Both orders of SMC are then compared to characterize the control performance in terms of robustness, handling external disturbances and chattering. Results dictate that the super twisting SMC is more accurate and robust against the external noise and chattering phenomena compared to the first order SMC

    A supervisory sliding mode control approach for cooperative robotic system of systems

    Get PDF
    This paper deals with the formulation of a supervisory sliding mode (SM) control approach oriented to deal with the interesting class of system of systems of robotic nature. This class of systems is characterized by the fact of being inherently distributed, cooperative, and, possibly, heterogeneous. In this paper, we propose a modular and composable approach relying on basic modules featuring a multilevel functional architecture, including a supervisor and a couple of hybrid position/force control schemes associated with a couple of cooperative robotic manipulators. In principle, the overall robotic system we are referring to can be viewed as a collection of basic modules of that type. In this paper, we focus on the design of the basic module. The hybrid position/force control schemes therein included are based on position and force controllers. The proposed position and force controllers are of SM type, to assure suitable robustness to perform a satisfactory trajectory tracking even in presence of unavoidable modeling uncertainties and external disturbances. The verification and the validation of our proposal have been performed by simulating the supervisor and the hybrid control scheme applied to one of the two robotic manipulators while experimentally testing the position control on the other arm. The experimental part of the tests has been carried out on a COMAU SMART3-S2 anthropomorphic industrial robotic manipulator

    Self-learning PID Control for X-Y NC Position Table with Uncertainty Base on Neural Network

    Get PDF
    An adaptive radical basis function (RBF) neural network PID control scheme for X-Y position table is proposed by the paper. Firstly, X-Y position table model is established, controller based on neutral network is used to learn adaptive and compensate uncertainty model of X-Y position table, neutral network is used to study model. PID neural network controller base on augmented variable method is designed. PID controller is used as assistant direction error controller, neural network parameters base on stochastic gradient algorithm can be adjust adaptive on line. The simulation results show that the presented controller has important engineering value

    Discrete Robust Control of Robot Manipulators using an Uncertainty and Disturbance Estimator

    Full text link
    This article presents the design of a robust observer based on the discrete-time formulation of Uncertainty and Disturbance Estimator (UDE), a well-known robust control technique, for the purpose of controlling robot manipulators. The design results in a complete closed-loop, robust, controller--observer structure. The observer incorporates the estimate of the overall uncertainty associated with the plant, in order to mimic its dynamics, and the control law is generated using an auxiliary error instead of state tracking error. A detailed qualitative and quantitative stability analysis is provided, and simulations are performed on the two-link robot manipulator system. Further, a comparative study with well-known control strategies for robot manipulators is presented. The results demonstrate the efficacy of the proposed technique, with better tracking performance and lower control energy compared to other strategies.Comment: 20 pages, 7 figures, 1 tabl
    corecore