5,995 research outputs found

    Somesthetic, Visual, and Auditory Feedback and Their Interactions Applied to Upper Limb Neurorehabilitation Technology: A Narrative Review to Facilitate Contextualization of Knowledge

    Get PDF
    Reduced hand dexterity is a common component of sensorimotor impairments for individuals after stroke. To improve hand function, innovative rehabilitation interventions are constantly developed and tested. In this context, technology-based interventions for hand rehabilitation have been emerging rapidly. This paper offers an overview of basic knowledge on post lesion plasticity and sensorimotor integration processes in the context of augmented feedback and new rehabilitation technologies, in particular virtual reality and soft robotic gloves. We also discuss some factors to consider related to the incorporation of augmented feedback in the development of technology-based interventions in rehabilitation. This includes factors related to feedback delivery parameter design, task complexity and heterogeneity of sensory deficits in individuals affected by a stroke. In spite of the current limitations in our understanding of the mechanisms involved when using new rehabilitation technologies, the multimodal augmented feedback approach appears promising and may provide meaningful ways to optimize recovery after stroke. Moving forward, we argue that comparative studies allowing stratification of the augmented feedback delivery parameters based upon different biomarkers, lesion characteristics or impairments should be advocated (e.g., injured hemisphere, lesion location, lesion volume, sensorimotor impairments). Ultimately, we envision that treatment design should combine augmented feedback of multiple modalities, carefully adapted to the specific condition of the individuals affected by a stroke and that evolves along with recovery. This would better align with the new trend in stroke rehabilitation which challenges the popular idea of the existence of an ultimate good-for-all intervention

    Augmented visual, auditory, haptic, and multimodal feedback in motor learning: A review

    Get PDF
    It is generally accepted that augmented feedback, provided by a human expert or a technical display, effectively enhances motor learning. However, discussion of the way to most effectively provide augmented feedback has been controversial. Related studies have focused primarily on simple or artificial tasks enhanced by visual feedback. Recently, technical advances have made it possible also to investigate more complex, realistic motor tasks and to implement not only visual, but also auditory, haptic, or multimodal augmented feedback. The aim of this review is to address the potential of augmented unimodal and multimodal feedback in the framework of motor learning theories. The review addresses the reasons for the different impacts of feedback strategies within or between the visual, auditory, and haptic modalities and the challenges that need to be overcome to provide appropriate feedback in these modalities, either in isolation or in combination. Accordingly, the design criteria for successful visual, auditory, haptic, and multimodal feedback are elaborate

    Timing and correction of stepping movements with a virtual reality avatar

    Get PDF
    Research into the ability to coordinate one’s movements with external cues has focussed on the use of simple rhythmic, auditory and visual stimuli, or interpersonal coordination with another person. Coordinating movements with a virtual avatar has not been explored, in the context of responses to temporal cues. To determine whether cueing of movements using a virtual avatar is effective, people’s ability to accurately coordinate with the stimuli needs to be investigated. Here we focus on temporal cues, as we know from timing studies that visual cues can be difficult to follow in the timing context. Real stepping movements were mapped onto an avatar using motion capture data. Healthy participants were then motion captured whilst stepping in time with the avatar’s movements, as viewed through a virtual reality headset. The timing of one of the avatar step cycles was accelerated or decelerated by 15% to create a temporal perturbation, for which participants would need to correct to, in order to remain in time. Step onset times of participants relative to the corresponding step-onsets of the avatar were used to measure the timing errors (asynchronies) between them. Participants completed either a visual-only condition, or auditory-visual with footstep sounds included, at two stepping tempo conditions (Fast: 400ms interval, Slow: 800ms interval). Participants’ asynchronies exhibited slow drift in the Visual-Only condition, but became stable in the Auditory-Visual condition. Moreover, we observed a clear corrective response to the phase perturbation in both the fast and slow tempo auditory-visual conditions. We conclude that an avatar’s movements can be used to influence a person’s own motion, but should include relevant auditory cues congruent with the movement to ensure a suitable level of entrainment is achieved. This approach has applications in physiotherapy, where virtual avatars present an opportunity to provide the guidance to assist patients in adhering to prescribed exercises

    An Overview of Self-Adaptive Technologies Within Virtual Reality Training

    Get PDF
    This overview presents the current state-of-the-art of self-adaptive technologies within virtual reality (VR) training. Virtual reality training and assessment is increasingly used for five key areas: medical, industrial & commercial training, serious games, rehabilitation and remote training such as Massive Open Online Courses (MOOCs). Adaptation can be applied to five core technologies of VR including haptic devices, stereo graphics, adaptive content, assessment and autonomous agents. Automation of VR training can contribute to automation of actual procedures including remote and robotic assisted surgery which reduces injury and improves accuracy of the procedure. Automated haptic interaction can enable tele-presence and virtual artefact tactile interaction from either remote or simulated environments. Automation, machine learning and data driven features play an important role in providing trainee-specific individual adaptive training content. Data from trainee assessment can form an input to autonomous systems for customised training and automated difficulty levels to match individual requirements. Self-adaptive technology has been developed previously within individual technologies of VR training. One of the conclusions of this research is that while it does not exist, an enhanced portable framework is needed and it would be beneficial to combine automation of core technologies, producing a reusable automation framework for VR training

    Review of the Augmented Reality Systems for Shoulder Rehabilitation

    Get PDF
    Literature shows an increasing interest for the development of augmented reality (AR) applications in several fields, including rehabilitation. Current studies show the need for new rehabilitation tools for upper extremity, since traditional interventions are less effective than in other body regions. This review aims at: Studying to what extent AR applications are used in shoulder rehabilitation, examining wearable/non-wearable technologies employed, and investigating the evidence supporting AR effectiveness. Nine AR systems were identified and analyzed in terms of: Tracking methods, visualization technologies, integrated feedback, rehabilitation setting, and clinical evaluation. Our findings show that all these systems utilize vision-based registration, mainly with wearable marker-based tracking, and spatial displays. No system uses head-mounted displays, and only one system (11%) integrates a wearable interface (for tactile feedback). Three systems (33%) provide only visual feedback; 66% present visual-audio feedback, and only 33% of these provide visual-audio feedback, 22% visual-audio with biofeedback, and 11% visual-audio with haptic feedback. Moreover, several systems (44%) are designed primarily for home settings. Three systems (33%) have been successfully evaluated in clinical trials with more than 10 patients, showing advantages over traditional rehabilitation methods. Further clinical studies are needed to generalize the obtained findings, supporting the effectiveness of the AR applications
    • …
    corecore