692 research outputs found

    Symbolic representation of scenarios in Bologna airport on virtual reality concept

    Get PDF
    This paper is a part of a big Project named Retina Project, which is focused in reduce the workload of an ATCO. It uses the last technological advances as Virtual Reality concept. The work has consisted in studying the different awareness situations that happens daily in Bologna Airport. It has been analysed one scenario with good visibility where the sun predominates and two other scenarios with poor visibility where the rain and the fog dominate. Due to the study of visibility in the three scenarios computed, the conclusion obtained is that the overlay must be shown with a constant dimension regardless the position of the aircraft to be readable by the ATC and also, the frame and the flight strip should be coloured in a showy colour (like red) for a better control by the ATCO

    Effects of Visual Interaction Methods on Simulated Unmanned Aircraft Operator Situational Awareness

    Get PDF
    The limited field of view of static egocentric visual displays employed in unmanned aircraft controls introduces the soda straw effect on operators, which significantly affects their ability to capture and maintain situational awareness by not depicting peripheral visual data. The problem with insufficient operator situational awareness is the resulting increased potential for error and oversight during operation of unmanned aircraft, leading to accidents and mishaps costing United States taxpayers between 4millionto4 million to 54 million per year. The purpose of this quantitative experimental completely randomized design study was to examine and compare use of dynamic eyepoint to static visual interaction in a simulated stationary egocentric environment to determine which, if any, resulted in higher situational awareness. The theoretical framework for the study established the premise that the amount of visual information available could affect the situational awareness of an operator and that increasing visual information through dynamic eyepoint manipulation may result in higher situational awareness than static visualization. Four experimental dynamic visual interaction methods were examined (analog joystick, head tracker, uninterrupted hat/point of view switch, and incremental hat/point of view switch) and compared to a single static method (the control treatment). The five methods were used in experimental testing with 150 participants to determine if the use of a dynamic eyepoint significantly increased the situational awareness of a user within a stationary egocentric environment, indicating that employing dynamic control would reduce the occurrence or consequences of the soda straw effect. The primary difference between the four dynamic visual interaction methods was their unique manipulation approaches to control the pitch and yaw of the simulated eyepoint. The identification of dynamic visual interaction increasing user SA may lead to the further refinement of human-machine-interface (HMI), teleoperation, and unmanned aircraft control principles, with the pursuit and performance of related research

    Routing UAVs to Co-Optimize Mission Effectiveness and Network Performance with Dynamic Programming

    Get PDF
    In support of the Air Force Research Laboratory\u27s (AFRL) vision of the layered sensing operations center, command and control intelligence surveillance and reconnaissance (C2ISR) more focus must be placed on architectures that support information systems, rather than just the information systems themselves. By extending the role of UAVs beyond simply intelligence, surveillance, and reconnaissance (ISR) operations and into a dual-role with networking operations we can better utilize our information assets. To achieve the goal of dual-role UAVs, a concrete approach to planning must be taken. This research defines a mathematical model and a non-trivial deterministic algorithmic approach to determining UAV placement to support ad-hoc network capability, while maintaining the valuable service of surveillance activities

    Evaluating the Augmented Reality Human-Robot Collaboration System

    Get PDF
    This paper discusses an experimental comparison of three user interface techniques for interaction with a mobile robot located remotely from the user. A typical means of operating a robot in such a situation is to teleoperate the robot using visual cues from a camera that displays the robot’s view of its work environment. However, the operator often has a difficult time maintaining awareness of the robot in its surroundings due to this single ego-centric view. Hence, a multi-modal system has been developed that allows the remote human operator to view the robot in its work environment through an Augmented Reality (AR) interface. The operator is able to use spoken dialog, reach into the 3D graphic representation of the work environment and discuss the intended actions of the robot to create a true collaboration. This study compares the typical ego-centric driven view to two versions of an AR interaction system for an experiment remotely operating a simulated mobile robot. One interface provides an immediate response from the remotely located robot. In contrast, the Augmented Reality Human-Robot Collaboration (AR-HRC) System interface enables the user to discuss and review a plan with the robot prior to execution. The AR-HRC interface was most effective, increasing accuracy by 30% with tighter variation, while reducing the number of close calls in operating the robot by factors of ~3x. It thus provides the means to maintain spatial awareness and give the users the feeling they were working in a true collaborative environment

    INTEROPERABILITY FOR MODELING AND SIMULATION IN MARITIME EXTENDED FRAMEWORK

    Get PDF
    This thesis reports on the most relevant researches performed during the years of the Ph.D. at the Genova University and within the Simulation Team. The researches have been performed according to M&S well known recognized standards. The studies performed on interoperable simulation cover all the environments of the Extended Maritime Framework, namely Sea Surface, Underwater, Air, Coast & Land, Space and Cyber Space. The applications cover both the civil and defence domain. The aim is to demonstrate the potential of M&S applications for the Extended Maritime Framework, applied to innovative unmanned vehicles as well as to traditional assets, human personnel included. A variety of techniques and methodology have been fruitfully applied in the researches, ranging from interoperable simulation, discrete event simulation, stochastic simulation, artificial intelligence, decision support system and even human behaviour modelling

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Stereoscopic Vision in Unmanned Aerial Vehicle Search and Rescue

    Get PDF
    Search and rescue operations are challenging due to the hazards imposed on the rescue teams. Team ARM IT has developed a virtual reality interface that controls a mounted camera payload on an unmanned aerial vehicle (UAV) through a head mounted display. This allows rescuers to manipulate a UAV to assist search and rescue missions safely and effectively through telepresence and enhanced situational awareness. The team tested these hypotheses by prototyping, testing, and refining individual components of the system through the use of flight simulation software and on-site volunteer testing. By providing a realistic sense of the UAV environment enhanced with relevant information, Team ARM IT’s project reduces the danger to the rescuers and provide cognitively natural situational awareness
    corecore