386 research outputs found

    New summation inequalities and their applications to discrete-time delay systems

    Full text link
    This paper provides new summation inequalities in both single and double forms to be used in stability analysis of discrete-time systems with time-varying delays. The potential capability of the newly derived inequalities is demonstrated by establishing less conservative stability conditions for a class of linear discrete-time systems with an interval time-varying delay in the framework of linear matrix inequalities. The effectiveness and least conservativeness of the derived stability conditions are shown by academic and practical examples.Comment: 15 pages, 01 figur

    Distributed state estimation in sensor networks with randomly occurring nonlinearities subject to time delays

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the links below - Copyright @ 2012 ACM.This article is concerned with a new distributed state estimation problem for a class of dynamical systems in sensor networks. The target plant is described by a set of differential equations disturbed by a Brownian motion and randomly occurring nonlinearities (RONs) subject to time delays. The RONs are investigated here to reflect network-induced randomly occurring regulation of the delayed states on the current ones. Through available measurement output transmitted from the sensors, a distributed state estimator is designed to estimate the states of the target system, where each sensor can communicate with the neighboring sensors according to the given topology by means of a directed graph. The state estimation is carried out in a distributed way and is therefore applicable to online application. By resorting to the Lyapunov functional combined with stochastic analysis techniques, several delay-dependent criteria are established that not only ensure the estimation error to be globally asymptotically stable in the mean square, but also guarantee the existence of the desired estimator gains that can then be explicitly expressed when certain matrix inequalities are solved. A numerical example is given to verify the designed distributed state estimators.This work was supported in part by the National Natural Science Foundation of China under Grants 61028008, 60804028 and 61174136, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    A novel delay-dependent asymptotic stability conditions for differential and Riemann-Liouville fractional differential neutral systems with constant delays and nonlinear perturbation

    Get PDF
    The novel delay-dependent asymptotic stability of a differential and Riemann-Liouville fractional differential neutral system with constant delays and nonlinear perturbation is studied. We describe the new asymptotic stability criterion in the form of linear matrix inequalities (LMIs), using the application of zero equations, model transformation and other inequalities. Then we show the new delay-dependent asymptotic stability criterion of a differential and Riemann-Liouville fractional differential neutral system with constant delays. Furthermore, we not only present the improved delay-dependent asymptotic stability criterion of a differential and Riemann-Liouville fractional differential neutral system with single constant delay but also the new delay-dependent asymptotic stability criterion of a differential and Riemann-Liouville fractional differential neutral equation with constant delays. Numerical examples are exploited to represent the improvement and capability of results over another research as compared with the least upper bounds of delay and nonlinear perturbation.This work is supported by Science Achievement Scholarship of Thailand (SAST), Research and Academic Affairs Promotion Fund, Faculty of Science, Khon Kaen University, Fiscal year 2020 and National Research Council of Thailand and Khon Kaen University, Thailand (6200069)

    Stability analysis and control of discrete-time systems with delay

    Get PDF
    The research presented in this thesis considers the stability analysis and control of discrete-time systems with delay. The interest in this class of systems has been motivated traditionally by sampled-data systems in which a process is sampled periodically and then controlled via a computer. This setting leads to relatively cheap control solutions, but requires the discretization of signals which typically introduces time delays. Therefore, controller design for sampled-data systems is often based on a model consisting of a discrete-time system with delay. More recently the interest in discrete-time systems with delay has been motivated by networked control systems in which the connection between the process and the controller is made through a shared communication network. This communication network increases the flexibility of the control architecture but also introduces effects such as packet dropouts, uncertain time-varying delays and timing jitter. To take those effects into account, typically a discrete-time system with delay is formulated that represents the process together with the communication network, this model is then used for controller design While most researchers that work on sampled-data and networked control systems make use of discrete-time systems with delay as a modeling class, they merely use these models as a tool to analyse the properties of their original control problem. Unfortunately, a relatively small amount of research on discrete-time systems with delay addresses fundamental questions such as: What trade-off between computational complexity and conceptual generality or potential control performance is provided by the different stability analysis methods that underlie existing results? Are there other stability analysis methods possible that provide a better trade-off between these properties? In this thesis we try to address these and other related questions. Motivated by the fact that almost every system in practice is subject to constraints and Lyapunov theory is one of the few methods that can be easily adapted to deal with constraints, all results in this thesis are based on Lyapunov theory. In Chapter 2 we introduce delay difference inclusions (DDIs) as a modeling class for systems with delay and discuss their generality and advantages. Furthermore, the two standard stability analysis results for DDIs that make use of Lyapunov theory, i.e., the Krasovskii and Razumikhin approaches, are considered. The Krasovskii approach provides necessary and sufficient conditions for stability while the Razumikhin approach provides conditions that are relatively simple to verify but conservative. An important conclusion is that the Razumikhin approach makes use of conditions that involve the system state only while those corresponding to the Krasovskii approach involve trajectory segments. Therefore, only the Razumikhin approach yields information about DDI trajectories directly, such that the corresponding computations can be executed in the low-dimensional state space of the DDI dynamics. Hence, we focus on the Razumikhin approach in the remainder of the thesis. In Chapter 3 it is shown that by considering each delayed state as a subsystem, the behavior of a DDI can be described by an interconnected system. Thus, the Razumikhin approach is found to be an exact application of the small-gain theorem, which provides an explanation for the conservatism that is typically associated with this approach. Then, inspired by the relation of DDIs to interconnected systems, we propose a new Razumikhin-type stability analysis method that makes use of a stability analysis result for interconnected systems with dissipative subsystems. The proposed method is shown to provide a trade-off between the conceptual generality of the Krasovskii approach and the computationally convenience of the Razumikhin approach. Unfortunately, these novel Razumikhin-type stability analysis conditions still remain conservative. Therefore, in Chapter 4 we propose a relaxation of the Razumikhin approach that provides necessary and sufficient conditions for stability. Thus, we obtain a Razumikhin-type result that makes use of conditions that involve the system state only and are non-conservative. Interestingly, we prove that for positive linear systems these conditions equivalent to the standard Razumikhin approach and hence both are necessary and sufficient for stability. This establishes the dominance of the standard Razumikhin approach over the Krasovskii approach for positive linear discrete-time systems with delay. Next, in Chapter 5 the stability analysis of constrained DDIs is considered. To this end, we study the construction of invariant sets. In this context the Krasovskii approach leads to algorithms that are not computationally tractable while the Razumikhin approach is, due to its conservatism, not always able to provide a suitable invariant set. Based on the non-conservative Razumikhin-type conditions that were proposed in Chapter 4, a novel invariance notion is proposed. This notion, called the invariant family of sets, preserves the conceptual generality of the Krasovskii approach while, at the same time, it has a computational complexity comparable to the Razumikhin approach. The properties of invariant families of sets are analyzed and synthesis methods are presented. Then, in Chapter 6 the stabilization of constrained linear DDIs is considered. In particular, we propose two advanced control schemes that make use of online optimization. The first scheme is designed specifically to handle constraints in a non-conservative way and is based on the Razumikhin approach. The second control scheme reduces the computational complexity that is typically associated with the stabilization of constrained DDIs and is based on a set of necessary and sufficient Razumikhin-type conditions for stability. In Chapter 7 interconnected systems with delay are considered. In particular, the standard stability analysis results based on the Krasovskii as well as the Razumikhin approach are extended to interconnected systems with delay using small-gain arguments. This leads, among others, to the insight that delays on the channels that connect the various subsystems can not cause the instability of the overall interconnected system with delay if a small-gain condition holds. This result stands in sharp contrast with the typical destabilizing effect that time delays have. The aforementioned results are used to analyse the stability of a classical power systems example where the power plants are controlled only locally via a communication network, which gives rise to local delays in the power plants. A reflection on the work that has been presented in this thesis and a set of conclusions and recommendations for future work are presented in Chapter 8

    STABILITY, FINITE-TIME STABILITY AND PASSIVITY CRITERIA FOR DISCRETE-TIME DELAYED NEURAL NETWORKS

    Get PDF
    In this paper, we present the problem of stability, finite-time stability and passivity for discrete-time neural networks (DNNs) with variable delays. For the purposes of stability analysis, an augmented Lyapunov-Krasovskii functional (LKF) with single and double summation terms and several augmented vectors is proposed by decomposing the time-delay interval into two non-equidistant subintervals. Then, by using the Wirtinger-based inequality, reciprocally and extended reciprocally convex combination lemmas, tight estimations for sum terms in the forward difference of LKF are given. In order to relax the existing results, several zero equalities are introduced and stability criteria are proposed in terms of linear matrix inequalities (LMIs). The main objective for the finite-time stability and passivity analysis is how to effectively evaluate the finite-time passivity conditions for DNNs. To achieve this, some weighted summation inequalities are proposed for application to a finite-sum term appearing in the forward difference of LKF, which helps to ensure that the considered delayed DNN is passive. The derived passivity criteria are presented in terms of linear matrix inequalities. Some numerical examples are presented to illustrate the proposed methodology

    An improved stability criterion for discrete-time time-delayed Lurā€™e systemwith sector-bounded nonlinearities

    Get PDF
    The absolute stability problem of discrete-time time-delayed Lur\u27e systems with sector bounded nonlinearities is investigated in this paper. Firstly, a modified Lyapunov-Krasovskii functional (LKF) is designed with augmenting additional double summation terms, which complements more coupling information between the delay intervals and other system state variables than some previous LKFs. Secondly, some improved delay-dependent absolute stability criteria based on linear matrix inequality form (LMI) are proposed via the modified LKF and the relaxed free-matrix-based summation inequality technique application. The stability criteria are less conservative than some results previously proposed. The reduction of the conservatism mainly relies on the full use of the relaxed summation inequality technique based on the modified LKF. Finally, two common numerical examples are presented to show the effectiveness of the proposed approach

    Exponential stabilization of neural networks with various activation functions and mixed time-varying delays

    Full text link
    This paper presents some results on the global exponential stabilization for neural networks with various activation functions and time-varying continuously distributed delays. Based on augmented time-varying Lyapunov-Krasovskii functionals, new delay-dependent conditions for the global exponential stabilization are obtained in terms of linear matrix inequalities. A numerical example is given to illustrate the feasibility of our results

    New Stability Criterion for Discrete-Time Genetic Regulatory Networks with Time-Varying Delays and Stochastic Disturbances

    Get PDF
    We propose an improved stability condition for a class of discrete-time genetic regulatory networks (GRNs) with interval time-varying delays and stochastic disturbances. By choosing an augmented novel Lyapunov-Krasovskii functional which contains some triple summation terms, a less conservative sufficient condition is obtained in terms of linear matrix inequalities (LMIs) by using the combination of the lower bound lemma, the discrete-time Jensen inequality, and the free-weighting matrix method. It is shown that the proposed results can be readily solved by using the Matlab software. Finally, two numerical examples are provided to illustrate the effectiveness and advantages of the theoretical results
    • ā€¦
    corecore