16,138 research outputs found

    The Evolution of First Person Vision Methods: A Survey

    Full text link
    The emergence of new wearable technologies such as action cameras and smart-glasses has increased the interest of computer vision scientists in the First Person perspective. Nowadays, this field is attracting attention and investments of companies aiming to develop commercial devices with First Person Vision recording capabilities. Due to this interest, an increasing demand of methods to process these videos, possibly in real-time, is expected. Current approaches present a particular combinations of different image features and quantitative methods to accomplish specific objectives like object detection, activity recognition, user machine interaction and so on. This paper summarizes the evolution of the state of the art in First Person Vision video analysis between 1997 and 2014, highlighting, among others, most commonly used features, methods, challenges and opportunities within the field.Comment: First Person Vision, Egocentric Vision, Wearable Devices, Smart Glasses, Computer Vision, Video Analytics, Human-machine Interactio

    Cultural Event Recognition with Visual ConvNets and Temporal Models

    Get PDF
    This paper presents our contribution to the ChaLearn Challenge 2015 on Cultural Event Classification. The challenge in this task is to automatically classify images from 50 different cultural events. Our solution is based on the combination of visual features extracted from convolutional neural networks with temporal information using a hierarchical classifier scheme. We extract visual features from the last three fully connected layers of both CaffeNet (pretrained with ImageNet) and our fine tuned version for the ChaLearn challenge. We propose a late fusion strategy that trains a separate low-level SVM on each of the extracted neural codes. The class predictions of the low-level SVMs form the input to a higher level SVM, which gives the final event scores. We achieve our best result by adding a temporal refinement step into our classification scheme, which is applied directly to the output of each low-level SVM. Our approach penalizes high classification scores based on visual features when their time stamp does not match well an event-specific temporal distribution learned from the training and validation data. Our system achieved the second best result in the ChaLearn Challenge 2015 on Cultural Event Classification with a mean average precision of 0.767 on the test set.Comment: Initial version of the paper accepted at the CVPR Workshop ChaLearn Looking at People 201

    Detection-by-Localization: Maintenance-Free Change Object Detector

    Full text link
    Recent researches demonstrate that self-localization performance is a very useful measure of likelihood-of-change (LoC) for change detection. In this paper, this "detection-by-localization" scheme is studied in a novel generalized task of object-level change detection. In our framework, a given query image is segmented into object-level subimages (termed "scene parts"), which are then converted to subimage-level pixel-wise LoC maps via the detection-by-localization scheme. Our approach models a self-localization system as a ranking function, outputting a ranked list of reference images, without requiring relevance score. Thanks to this new setting, we can generalize our approach to a broad class of self-localization systems. Our ranking based self-localization model allows to fuse self-localization results from different modalities via an unsupervised rank fusion derived from a field of multi-modal information retrieval (MMR).Comment: 7 pages, 3 figures, Technical repor
    • …
    corecore