713 research outputs found

    Scaling Machine Learning Systems using Domain Adaptation

    Get PDF
    Machine-learned components, particularly those trained using deep learning methods, are becoming integral parts of modern intelligent systems, with applications including computer vision, speech processing, natural language processing and human activity recognition. As these machine learning (ML) systems scale to real-world settings, they will encounter scenarios where the distribution of the data in the real-world (i.e., the target domain) is different from the data on which they were trained (i.e., the source domain). This phenomenon, known as domain shift, can significantly degrade the performance of ML systems in new deployment scenarios. In this thesis, we study the impact of domain shift caused by variations in system hardware, software and user preferences on the performance of ML systems. After quantifying the performance degradation of ML models in target domains due to the various types of domain shift, we propose unsupervised domain adaptation (uDA) algorithms that leverage unlabeled data collected in the target domain to improve the performance of the ML model. At its core, this thesis argues for the need to develop uDA solutions while adhering to practical scenarios in which ML systems will scale. More specifically, we consider four scenarios: (i) opaque ML systems, wherein parameters of the source prediction model are not made accessible in the target domain, (ii) transparent ML systems, wherein source model parameters are accessible and can be modified in the target domain, (iii) ML systems where source and target domains do not have identical label spaces, and (iv) distributed ML systems, wherein the source and target domains are geographically distributed, their datasets are private and cannot be exchanged using adaptation. We study the unique challenges and constraints of each scenario and propose novel uDA algorithms that outperform state-of-the-art baselines
    • …
    corecore