25,933 research outputs found

    Spatial Hearing with Incongruent Visual or Auditory Room Cues

    Get PDF
    In day-to-day life, humans usually perceive the location of sound sources as outside their heads. This externalized auditory spatial perception can be reproduced through headphones by recreating the sound pressure generated by the source at the listener’s eardrums. This requires the acoustical features of the recording environment and listener’s anatomy to be recorded at the listener’s ear canals. Although the resulting auditory images can be indistinguishable from real-world sources, their externalization may be less robust when the playback and recording environments differ. Here we tested whether a mismatch between playback and recording room reduces perceived distance, azimuthal direction, and compactness of the auditory image, and whether this is mostly due to incongruent auditory cues or to expectations generated from the visual impression of the room. Perceived distance ratings decreased significantly when collected in a more reverberant environment than the recording room, whereas azimuthal direction and compactness remained room independent. Moreover, modifying visual room-related cues had no effect on these three attributes, while incongruent auditory room-related cues between the recording and playback room did affect distance perception. Consequently, the external perception of virtual sounds depends on the degree of congruency between the acoustical features of the environment and the stimuli

    Effects of virtual acoustics on dynamic auditory distance perception

    Get PDF
    Sound propagation encompasses various acoustic phenomena including reverberation. Current virtual acoustic methods, ranging from parametric filters to physically-accurate solvers, can simulate reverberation with varying degrees of fidelity. We investigate the effects of reverberant sounds generated using different propagation algorithms on acoustic distance perception, i.e., how faraway humans perceive a sound source. In particular, we evaluate two classes of methods for real-time sound propagation in dynamic scenes based on parametric filters and ray tracing. Our study shows that the more accurate method shows less distance compression as compared to the approximate, filter-based method. This suggests that accurate reverberation in VR results in a better reproduction of acoustic distances. We also quantify the levels of distance compression introduced by different propagation methods in a virtual environment.Comment: 8 Pages, 7 figure

    Auditory environmental context affects visual distance perception

    Get PDF
    In this article, we show that visual distance perception (VDP) is influenced by the auditory environmental context through reverberation-related cues. We performed two VDP experiments in two dark rooms with extremely different reverberation times: an anechoic chamber and a reverberant room. Subjects assigned to the reverberant room perceived the targets farther than subjects assigned to the anechoic chamber. Also, we found a positive correlation between the maximum perceived distance and the auditorily perceived room size. We next performed a second experiment in which the same subjects of Experiment 1 were interchanged between rooms. We found that subjects preserved the responses from the previous experiment provided they were compatible with the present perception of the environment; if not, perceived distance was biased towards the auditorily perceived boundaries of the room. Results of both experiments show that the auditory environment can influence VDP, presumably through reverberation cues related to the perception of room size.Fil: Etchemendy, Pablo Esteban. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologĂ­a. Laboratorio de AcĂşstica y PercepciĂłn Sonora; ArgentinaFil: AbregĂş, Ezequiel Lucas. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologĂ­a. Laboratorio de AcĂşstica y PercepciĂłn Sonora; ArgentinaFil: Calcagno, Esteban. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologĂ­a. Laboratorio de AcĂşstica y PercepciĂłn Sonora; ArgentinaFil: Eguia, Manuel Camilo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologĂ­a. Laboratorio de AcĂşstica y PercepciĂłn Sonora; ArgentinaFil: Vechiatti, Nilda. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologĂ­a. Laboratorio de AcĂşstica y PercepciĂłn Sonora; ArgentinaFil: Iasi, Federico. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologĂ­a. Laboratorio de AcĂşstica y PercepciĂłn Sonora; ArgentinaFil: Vergara, Ramiro Oscar. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y TecnologĂ­a. Laboratorio de AcĂşstica y PercepciĂłn Sonora; Argentin

    Virtual Audio - Three-Dimensional Audio in Virtual Environments

    Get PDF
    Three-dimensional interactive audio has a variety ofpotential uses in human-machine interfaces. After lagging seriously behind the visual components, the importance of sound is now becoming increas-ingly accepted. This paper mainly discusses background and techniques to implement three-dimensional audio in computer interfaces. A case study of a system for three-dimensional audio, implemented by the author, is described in great detail. The audio system was moreover integrated with a virtual reality system and conclusions on user tests and use of the audio system is presented along with proposals for future work at the end of the paper. The thesis begins with a definition of three-dimensional audio and a survey on the human auditory system to give the reader the needed knowledge of what three-dimensional audio is and how human auditory perception works

    Sound for Fantasy and Freedom

    Get PDF
    Sound is an integral part of our everyday lives. Sound tells us about physical events in the environ- ment, and we use our voices to share ideas and emotions through sound. When navigating the world on a day-to-day basis, most of us use a balanced mix of stimuli from our eyes, ears and other senses to get along. We do this totally naturally and without effort. In the design of computer game experiences, traditionally, most attention has been given to vision rather than the balanced mix of stimuli from our eyes, ears and other senses most of us use to navigate the world on a day to day basis. The risk is that this emphasis neglects types of interaction with the game needed to create an immersive experience. This chapter summarizes the relationship between sound properties, GameFlow and immersive experience and discusses two projects in which Interactive Institute, Sonic Studio has balanced perceptual stimuli and game mechanics to inspire and create new game concepts that liberate users and their imagination

    Relative Auditory Distance Discrimination With Virtual Nearby Sound Sources

    Get PDF
    In this paper a psychophysical experiment targeted at exploring relative distance discrimination thresholds with binaurally rendered virtual sound sources in the near field is described. Pairs of virtual sources are spatialized around 6 different spatial locations (2 directions 7 3 reference distances) through a set of generic far-field Head-Related Transfer Functions (HRTFs) coupled with a near-field correction model proposed in the literature, known as DVF (Distance Variation Function). Individual discrimination thresholds for each spatial location and for each of the two orders of presentation of stimuli (approaching or receding) are calculated on 20 subjects through an adaptive procedure. Results show that thresholds are higher than those reported in the literature for real sound sources, and that approaching and receding stimuli behave differently. In particular, when the virtual source is close (< 25 cm) thresholds for the approaching condition are significantly lower compared to thresholds for the receding condition, while the opposite behaviour appears for greater distances (~ 1 m). We hypothesize such an asymmetric bias to be due to variations in the absolute stimulus level
    • …
    corecore