336 research outputs found

    Neuromorphic analogue VLSI

    Get PDF
    Neuromorphic systems emulate the organization and function of nervous systems. They are usually composed of analogue electronic circuits that are fabricated in the complementary metal-oxide-semiconductor (CMOS) medium using very large-scale integration (VLSI) technology. However, these neuromorphic systems are not another kind of digital computer in which abstract neural networks are simulated symbolically in terms of their mathematical behavior. Instead, they directly embody, in the physics of their CMOS circuits, analogues of the physical processes that underlie the computations of neural systems. The significance of neuromorphic systems is that they offer a method of exploring neural computation in a medium whose physical behavior is analogous to that of biological nervous systems and that operates in real time irrespective of size. The implications of this approach are both scientific and practical. The study of neuromorphic systems provides a bridge between levels of understanding. For example, it provides a link between the physical processes of neurons and their computational significance. In addition, the synthesis of neuromorphic systems transposes our knowledge of neuroscience into practical devices that can interact directly with the real world in the same way that biological nervous systems do

    A Physiologically Inspired Method for Audio Classification

    Get PDF
    We explore the use of physiologically inspired auditory features with both physiologically motivated and statistical audio classification methods. We use features derived from a biophysically defensible model of the early auditory system for audio classification using a neural network classifier. We also use a Gaussian-mixture-model (GMM)-based classifier for the purpose of comparison and show that the neural-network-based approach works better. Further, we use features from a more advanced model of the auditory system and show that the features extracted from this model of the primary auditory cortex perform better than the features from the early auditory stage. The features give good classification performance with only one-second data segments used for training and testing

    Fast vision through frameless event-based sensing and convolutional processing: Application to texture recognition

    Get PDF
    Address-event representation (AER) is an emergent hardware technology which shows a high potential for providing in the near future a solid technological substrate for emulating brain-like processing structures. When used for vision, AER sensors and processors are not restricted to capturing and processing still image frames, as in commercial frame-based video technology, but sense and process visual information in a pixel-level event-based frameless manner. As a result, vision processing is practically simultaneous to vision sensing, since there is no need to wait for sensing full frames. Also, only meaningful information is sensed, communicated, and processed. Of special interest for brain-like vision processing are some already reported AER convolutional chips, which have revealed a very high computational throughput as well as the possibility of assembling large convolutional neural networks in a modular fashion. It is expected that in a near future we may witness the appearance of large scale convolutional neural networks with hundreds or thousands of individual modules. In the meantime, some research is needed to investigate how to assemble and configure such large scale convolutional networks for specific applications. In this paper, we analyze AER spiking convolutional neural networks for texture recognition hardware applications. Based on the performance figures of already available individual AER convolution chips, we emulate large scale networks using a custom made event-based behavioral simulator. We have developed a new event-based processing architecture that emulates with AER hardware Manjunath's frame-based feature recognition software algorithm, and have analyzed its performance using our behavioral simulator. Recognition rate performance is not degraded. However, regarding speed, we show that recognition can be achieved before an equivalent frame is fully sensed and transmitted.Ministerio de Educación y Ciencia TEC-2006-11730-C03-01Junta de Andalucía P06-TIC-01417European Union IST-2001-34124, 21677

    The effect of heterogeneity on decorrelation mechanisms in spiking neural networks: a neuromorphic-hardware study

    Get PDF
    High-level brain function such as memory, classification or reasoning can be realized by means of recurrent networks of simplified model neurons. Analog neuromorphic hardware constitutes a fast and energy efficient substrate for the implementation of such neural computing architectures in technical applications and neuroscientific research. The functional performance of neural networks is often critically dependent on the level of correlations in the neural activity. In finite networks, correlations are typically inevitable due to shared presynaptic input. Recent theoretical studies have shown that inhibitory feedback, abundant in biological neural networks, can actively suppress these shared-input correlations and thereby enable neurons to fire nearly independently. For networks of spiking neurons, the decorrelating effect of inhibitory feedback has so far been explicitly demonstrated only for homogeneous networks of neurons with linear sub-threshold dynamics. Theory, however, suggests that the effect is a general phenomenon, present in any system with sufficient inhibitory feedback, irrespective of the details of the network structure or the neuronal and synaptic properties. Here, we investigate the effect of network heterogeneity on correlations in sparse, random networks of inhibitory neurons with non-linear, conductance-based synapses. Emulations of these networks on the analog neuromorphic hardware system Spikey allow us to test the efficiency of decorrelation by inhibitory feedback in the presence of hardware-specific heterogeneities. The configurability of the hardware substrate enables us to modulate the extent of heterogeneity in a systematic manner. We selectively study the effects of shared input and recurrent connections on correlations in membrane potentials and spike trains. Our results confirm ...Comment: 20 pages, 10 figures, supplement

    Neuromorphic Auditory Perception by Neural Spiketrum

    Full text link
    Neuromorphic computing holds the promise to achieve the energy efficiency and robust learning performance of biological neural systems. To realize the promised brain-like intelligence, it needs to solve the challenges of the neuromorphic hardware architecture design of biological neural substrate and the hardware amicable algorithms with spike-based encoding and learning. Here we introduce a neural spike coding model termed spiketrum, to characterize and transform the time-varying analog signals, typically auditory signals, into computationally efficient spatiotemporal spike patterns. It minimizes the information loss occurring at the analog-to-spike transformation and possesses informational robustness to neural fluctuations and spike losses. The model provides a sparse and efficient coding scheme with precisely controllable spike rate that facilitates training of spiking neural networks in various auditory perception tasks. We further investigate the algorithm-hardware co-designs through a neuromorphic cochlear prototype which demonstrates that our approach can provide a systematic solution for spike-based artificial intelligence by fully exploiting its advantages with spike-based computation.Comment: This work has been submitted to the IEEE for possible publicatio

    Neuromorphic Analogue VLSI

    Full text link

    Development and Characterization of Ear-EEG for Real-Life Brain-Monitoring

    Get PDF
    Functional brain monitoring methods for neuroscience and medical diagnostics have until recently been limited to laboratory settings. However, there is a great potential for studying the human brain in the everyday life, with measurements performed in more realistic real-life settings. Electroencephalography (EEG) can be measured in real-life using wearable EEG equipment. Current wearable EEG devices are typically based on scalp electrodes, causing the devices to be visible and often uncomfortable to wear for long-term recordings. Ear-EEG is a method where EEG is recorded from electrodes placed in the ear. The Ear-EEG supports non-invasive long-term recordings of EEG in real-life in a discreet way. This Ph.D. project concerns the characterization and development of ear-EEG for real-life brain-monitoring. This was addressed through characterization of physiological artifacts in real-life settings, development and characterization of dry-contact electrodes for real-life ear-EEG acquisition, measurements of ear-EEG in real-life, and development of a method for mapping cortical sources to the ear. Characterization of physiological artifacts showed a similar artifact level for recordings from ear electrodes and temporal lobe scalp electrodes. Dry-contact electrodes and flexible earpieces were developed to increase the comfort and user-friendliness of the ear-EEG. In addition, electronic instrumentation was developed to allow implementation in a hearing-aid-sized ear-EEG device. Ear-EEG measurements performed in real-life settings with the dry-contact electrodes, were comparable to temporal lobe scalp EEG, when referenced to a Cz scalp electrode. However, the recordings showed that further development of the earpieces and electrodes are needed to obtain a satisfying recording quality, when the reference is located close to or in the ear. Mapping of the electric fields from well-defined cortical sources to the ear, showed good agreement with previous ear-EEG studies and has the potential to provide valuable information for future development of the ear-EEG method. The Ph.D. project showed that ear-EEG measurements can be performed in real-life, with dry-contact electrodes. The brain processes studied, were established with comparable clarity on recordings from temporal lobe scalp and ear electrodes. With further development of the earpieces, electrodes, and electronic instrumentation, it appears to be realistic to implement ear-EEG into unobtrusive and user-friendly devices for monitoring of human brain processes in real-life

    Neural architecture for echo suppression during sound source localization based on spiking neural cell models

    Get PDF
    Zusammenfassung Diese Arbeit untersucht die biologischen Ursachen des psycho-akustischen Präzedenz Effektes, der Menschen in die Lage versetzt, akustische Echos während der Lokalisation von Schallquellen zu unterdrücken. Sie enthält ein Modell zur Echo-Unterdrückung während der Schallquellenlokalisation, welches in technischen Systemen zur Mensch-Maschine Interaktion eingesetzt werden kann. Die Grundlagen dieses Modells wurden aus eigenen elektrophysiologischen Experimenten an der Mongolischen Wüstenrennmaus gewonnen. Die dabei erstmalig an der Wüstenrennmaus erzielten Ergebnisse, zeigen ein besonderes Verhalten spezifischer Zellen im Dorsalen Kern des Lateral Lemniscus, einer dedizierten Region des auditorischen Hirnstammes. Die dort sichtbare Langzeithemmung scheint die Grundlage für die Echounterdrückung in höheren auditorischen Zentren zu sein. Das entwickelte Model war in der Lage dieses Verhalten nachzubilden, und legt die Vermutung nahe, dass eine starke und zeitlich präzise Hyperpolarisation der zugrundeliegende physiologische Mechanismus dieses Verhaltens ist. Die entwickelte Neuronale Modellarchitektur modelliert das Innenohr und fünf wesentliche Kerne des auditorischen Hirnstammes in ihrer Verbindungsstruktur und internen Dynamik. Sie stellt einen neuen Typus neuronaler Modellierung dar, der als Spike-Interaktionsmodell (SIM) bezeichnet wird. SIM nutzen die präzise räumlich-zeitliche Interaktion einzelner Aktionspotentiale (Spikes) für die Kodierung und Verarbeitung neuronaler Informationen. Die Basis dafür bilden Integrate-and-Fire Neuronenmodelle sowie Hebb'sche Synapsen, welche um speziell entwickelte dynamische Kernfunktionen erweitert wurden. Das Modell ist in der Lage, Zeitdifferenzen von 10 mykrosekunden zu detektieren und basiert auf den Prinzipien der zeitlichen und räumlichen Koinzidenz sowie der präzisen lokalen Inhibition. Es besteht ausschließlich aus Elementen einer eigens entwickelten Neuronalen Basisbibliothek (NBL) die speziell für die Modellierung verschiedenster Spike- Interaktionsmodelle entworfen wurde. Diese Bibliothek erweitert die kommerziell verfügbare dynamische Simulationsumgebung von MATLAB/SIMULINK um verschiedene Modelle von Neuronen und Synapsen, welche die intrinsischen dynamischen Eigenschaften von Nervenzellen nachbilden. Die Nutzung dieser Bibliothek versetzt sowohl den Ingenieur als auch den Biologen in die Lage, eigene, biologisch plausible, Modelle der neuronalen Informationsverarbeitung ohne detaillierte Programmierkenntnisse zu entwickeln. Die grafische Oberfläche ermöglicht strukturelle sowie parametrische Modifikationen und ist in der Lage, den Zeitverlauf mikroskopischer Zellpotentiale aber auch makroskopischer Spikemuster während und nach der Simulation darzustellen. Zwei grundlegende Elemente der Neuronalen Basisbibliothek wurden zur Implementierung als spezielle analog-digitale Schaltungen vorbereitet. Erste Silizium Implementierungen durch das Team des DFG Graduiertenkollegs GRK 164 konnten die Möglichkeit einer vollparallelen on line Verarbeitung von Schallsignalen nachweisen. Durch Zuhilfenahme des im GRK entwickelten automatisierten Layout Generators wird es möglich, spezielle Prozessoren zur Anwendung biologischer Verarbeitungsprinzipien in technischen Systemen zu entwickeln. Diese Prozessoren unterscheiden sich grundlegend von den klassischen von Neumann Prozessoren indem sie räumlich und zeitlich verteilte Spikemuster, anstatt sequentieller binärer Werte zur Informationsrepräsentation nutzen. Sie erweitern das digitale Kodierungsprinzip durch die Dimensionen des Raumes (2 dimensionale Nachbarschaft) der Zeit (Frequenz, Phase und Amplitude) sowie der zeitlichen Dynamik analoger Potentialverläufe. Diese Dissertation besteht aus sieben Kapiteln, welche den verschiedenen Bereichen der Computational Neuroscience gewidmet sind. Kapitel 1 beschreibt die Motivation dieser Arbeit welche aus der Absicht rühren, biologische Prinzipien der Schallverarbeitung zu erforschen und für technische Systeme während der Interaktion mit dem Menschen nutzbar zu machen. Zusätzlich werden fünf Gründe für die Nutzung von Spike-Interaktionsmodellen angeführt sowie deren neuartiger Charakter beschrieben. Kapitel 2 führt die biologischen Prinzipien der Schallquellenlokalisation und den psychoakustischen Präzedenz Effekt ein. Aktuelle Hypothesen zur Entstehung dieses Effektes werden anhand ausgewählter experimenteller Ergebnisse verschiedener Forschungsgruppen diskutiert. Kapitel 3 beschreibt die entwickelte Neuronale Basisbibliothek und führt die einzelnen neuronalen Simulationselemente ein. Es erklärt die zugrundeliegenden mathematischen Funktionen der dynamischen Komponenten und beschreibt deren generelle Einsetzbarkeit zur dynamischen Simulation spikebasierter Neuronaler Netzwerke. Kapitel 4 enthält ein speziell entworfenes Modell des auditorischen Hirnstammes beginnend mit den Filterkaskaden zur Simulation des Innenohres, sich fortsetzend über mehr als 200 Zellen und 400 Synapsen in 5 auditorischen Kernen bis zum Richtungssensor im Bereich des auditorischen Mittelhirns. Es stellt die verwendeten Strukturen und Parameter vor und enthält grundlegende Hinweise zur Nutzung der Simulationsumgebung. Kapitel 5 besteht aus drei Abschnitten, wobei der erste Abschnitt die Experimentalbedingungen und Ergebnisse der eigens durchgeführten Tierversuche beschreibt. Der zweite Abschnitt stellt die Ergebnisse von 104 Modellversuchen zur Simulationen psycho-akustischer Effekte dar, welche u.a. die Fähigkeit des Modells zur Nachbildung des Präzedenz Effektes testen. Schließlich beschreibt der letzte Abschnitt die Ergebnisse der 54 unter realen Umweltbedingungen durchgeführten Experimente. Dabei kamen Signale zur Anwendung, welche in normalen sowie besonders stark verhallten Räumen aufgezeichnet wurden. Kapitel 6 vergleicht diese Ergebnisse mit anderen biologisch motivierten und technischen Verfahren zur Echounterdrückung und Schallquellenlokalisation und führt den aktuellen Status der Hardwareimplementierung ein. Kapitel 7 enthält schließlich eine kurze Zusammenfassung und einen Ausblick auf weitere Forschungsobjekte und geplante Aktivitäten. Diese Arbeit möchte zur Entwicklung der Computational Neuroscience beitragen, indem sie versucht, in einem speziellen Anwendungsfeld die Lücke zwischen biologischen Erkenntnissen, rechentechnischen Modellen und Hardware Engineering zu schließen. Sie empfiehlt ein neues räumlich-zeitliches Paradigma der dynamischen Informationsverarbeitung zur Erschließung biologischer Prinzipien der Informationsverarbeitung für technische Anwendungen.This thesis investigates the biological background of the psycho-acoustical precedence effect, enabling humans to suppress echoes during the localization of sound sources. It provides a technically feasible and biologically plausible model for sound source localization under echoic conditions, ready to be used by technical systems during man-machine interactions. The model is based upon own electro-physiological experiments in the mongolian gerbil. The first time in gerbils obtained results reveal a special behavior of specific cells of the dorsal nucleus of the lateral lemniscus (DNLL) - a distinct region in the auditory brainstem. The explored persistent inhibition effect of these cells seems to account for the base of echo suppression at higher auditory centers. The developed model proved capable to duplicate this behavior and suggests, that a strong and timely precise hyperpolarization is the basic mechanism behind this cell behavior. The developed neural architecture models the inner ear as well as five major nuclei of the auditory brainstem in their connectivity and intrinsic dynamics. It represents a new type of neural modeling described as Spike Interaction Models (SIM). SIM use the precise spatio-temporal interaction of single spike events for coding and processing of neural information. Their basic elements are Integrate-and-Fire Neurons and Hebbian synapses, which have been extended by specially designed dynamic transfer functions. The model is capable to detect time differences as small as 10 mircrosecondes and employs the principles of coincidence detection and precise local inhibition for auditory processing. It consists exclusively of elements of a specifically designed Neural Base Library (NBL), which has been developed for multi purpose modeling of Spike Interaction Models. This library extends the commercially available dynamic simulation environment of MATLAB/SIMULINK by different models of neurons and synapses simulating the intrinsic dynamic properties of neural cells. The usage of this library enables engineers as well as biologists to design their own, biologically plausible models of neural information processing without the need for detailed programming skills. Its graphical interface provides access to structural as well as parametric changes and is capable to display the time course of microscopic cell parameters as well as macroscopic firing pattern during simulations and thereafter. Two basic elements of the Neural Base Library have been prepared for implementation by specialized mixed analog-digital circuitry. First silicon implementations were realized by the team of the DFG Graduiertenkolleg GRK 164 and proved the possibility of fully parallel on line processing of sounds. By using the automated layout processor under development in the Graduiertenkolleg, it will be possible to design specific processors in order to apply theprinciples of distributed biological information processing to technical systems. These processors differ from classical von Neumann processors by the use of spatio temporal spike pattern instead of sequential binary values. They will extend the digital coding principle by the dimensions of space (spatial neighborhood), time (frequency, phase and amplitude) as well as the dynamics of analog potentials and introduce a new type of information processing. This thesis consists of seven chapters, dedicated to the different areas of computational neuroscience. Chapter 1: provides the motivation of this study arising from the attempt to investigate the biological principles of sound processing and make them available to technical systems interacting with humans under real world conditions. Furthermore, five reasons to use spike interaction models are given and their novel characteristics are discussed. Chapter 2: introduces the biological principles of sound source localization and the precedence effect. Current hypothesis on echo suppression and the underlying principles of the precedence effect are discussed by reference to a small selection of physiological and psycho-acoustical experiments. Chapter 3: describes the developed neural base library and introduces each of the designed neural simulation elements. It also explains the developed mathematical functions of the dynamic compartments and describes their general usage for dynamic simulation of spiking neural networks. Chapter 4: introduces the developed specific model of the auditory brainstem, starting from the filtering cascade in the inner ear via more than 200 cells and 400 synapses in five auditory regions up to the directional sensor at the level of the auditory midbrain. It displays the employed parameter sets and contains basic hints for the set up and configuration of the simulation environment. Chapter 5: consists of three sections, whereas the first one describes the set up and results of the own electro-physiological experiments. The second describes the results of 104 model simulations, performed to test the models ability to duplicate psycho-acoustical effects like the precedence effect. Finally, the last section of this chapter contains the results of 54 real world experiments using natural sound signals, recorded under normal as well as highly reverberating conditions. Chapter 6: compares the achieved results to other biologically motivated and technical models for echo suppression and sound source localization and introduces the current status of silicon implementation. Chapter 7: finally provides a short summary and an outlook toward future research subjects and areas of investigation. This thesis aims to contribute to the field of computational neuroscience by bridging the gap between biological investigation, computational modeling and silicon engineering in a specific field of application. It suggests a new spatio-temporal paradigm of information processing in order to access the capabilities of biological systems for technical applications

    Digital neuromorphic auditory systems

    Get PDF
    This dissertation presents several digital neuromorphic auditory systems. Neuromorphic systems are capable of running in real-time at a smaller computing cost and consume lower power than on widely available general computers. These auditory systems are considered neuromorphic as they are modelled after computational models of the mammalian auditory pathway and are capable of running on digital hardware, or more specifically on a field-programmable gate array (FPGA). The models introduced are categorised into three parts: a cochlear model, an auditory pitch model, and a functional primary auditory cortical (A1) model. The cochlear model is the primary interface of an input sound signal and transmits the 2D time-frequency representation of the sound to the pitch models as well as to the A1 model. In the pitch model, pitch information is extracted from the sound signal in the form of a fundamental frequency. From the A1 model, timbre information in the form of time-frequency envelope information of the sound signal is extracted. Since the computational auditory models mentioned above are required to be implemented on FPGAs that possess fewer computational resources than general-purpose computers, the algorithms in the models are optimised so that they fit on a single FPGA. The optimisation includes using simplified hardware-implementable signal processing algorithms. Computational resource information of each model on FPGA is extracted to understand the minimum computational resources required to run each model. This information includes the quantity of logic modules, register quantity utilised, and power consumption. Similarity comparisons are also made between the output responses of the computational auditory models on software and hardware using pure tones, chirp signals, frequency-modulated signal, moving ripple signals, and musical signals as input. The limitation of the responses of the models to musical signals at multiple intensity levels is also presented along with the use of an automatic gain control algorithm to alleviate such limitations. With real-world musical signals as their inputs, the responses of the models are also tested using classifiers – the response of the auditory pitch model is used for the classification of monophonic musical notes, and the response of the A1 model is used for the classification of musical instruments with their respective monophonic signals. Classification accuracy results are shown for model output responses on both software and hardware. With the hardware implementable auditory pitch model, the classification score stands at 100% accuracy for musical notes from the 4th and 5th octaves containing 24 classes of notes. With the hardware implementation auditory timbre model, the classification score is 92% accuracy for 12 classes musical instruments. Also presented is the difference in memory requirements of the model output responses on both software and hardware – pitch and timbre responses used for the classification exercises use 24 and 2 times less memory space for hardware than software
    corecore