152 research outputs found

    Auditory cortical delta-entrainment interacts with oscillatory power in multiple fronto-parietal networks

    Get PDF
    The timing of slow auditory cortical activity aligns to the rhythmic fluctuations in speech. This entrainment is considered to be a marker of the prosodic and syllabic encoding of speech, and has been shown to correlate with intelligibility. Yet, whether and how auditory cortical entrainment is influenced by the activity in other speech–relevant areas remains unknown. Using source-localized MEG data, we quantified the dependency of auditory entrainment on the state of oscillatory activity in fronto-parietal regions. We found that delta band entrainment interacted with the oscillatory activity in three distinct networks. First, entrainment in the left anterior superior temporal gyrus (STG) was modulated by beta power in orbitofrontal areas, possibly reflecting predictive top-down modulations of auditory encoding. Second, entrainment in the left Heschl's Gyrus and anterior STG was dependent on alpha power in central areas, in line with the importance of motor structures for phonological analysis. And third, entrainment in the right posterior STG modulated theta power in parietal areas, consistent with the engagement of semantic memory. These results illustrate the topographical network interactions of auditory delta entrainment and reveal distinct cross-frequency mechanisms by which entrainment can interact with different cognitive processes underlying speech perception

    Prominence of delta oscillatory rhythms in the motor cortex and their relevance for auditory and speech perception

    Get PDF
    In the motor cortex, beta oscillations (∼12-30 Hz) are generally considered a principal rhythm contributing to movement planning and execution. Beta oscillations cohabit and dynamically interact with slow delta oscillations (0.5-4 Hz), but the role of delta oscillations and the subordinate relationship between these rhythms in the perception-action loop remains unclear. Here, we review evidence that motor delta oscillations shape the dynamics of motor behaviors and sensorimotor processes, in particular during auditory perception. We describe the functional coupling between delta and beta oscillations in the motor cortex during spontaneous and planned motor acts. In an active sensing framework, perception is strongly shaped by motor activity, in particular in the delta band, which imposes temporal constraints on the sampling of sensory information. By encoding temporal contextual information, delta oscillations modulate auditory processing and impact behavioral outcomes. Finally, we consider the contribution of motor delta oscillations in the perceptual analysis of speech signals, providing a contextual temporal frame to optimize the parsing and processing of slow linguistic information

    Contributions of local speech encoding and functional connectivity to audio-visual speech perception

    Get PDF
    Seeing a speaker’s face enhances speech intelligibility in adverse environments. We investigated the underlying network mechanisms by quantifying local speech representations and directed connectivity in MEG data obtained while human participants listened to speech of varying acoustic SNR and visual context. During high acoustic SNR speech encoding by temporally entrained brain activity was strong in temporal and inferior frontal cortex, while during low SNR strong entrainment emerged in premotor and superior frontal cortex. These changes in local encoding were accompanied by changes in directed connectivity along the ventral stream and the auditory-premotor axis. Importantly, the behavioral benefit arising from seeing the speaker’s face was not predicted by changes in local encoding but rather by enhanced functional connectivity between temporal and inferior frontal cortex. Our results demonstrate a role of auditory-frontal interactions in visual speech representations and suggest that functional connectivity along the ventral pathway facilitates speech comprehension in multisensory environments

    The spatial localization of targeted alpha modulations in concurrent EEG-fMRI during visual entrainment

    Get PDF

    Toward the language oscillogenome

    Get PDF
    Language has been argued to arise, both ontogenetically and phylogenetically, from specific patterns of brain wiring. We argue that it can further be shown that core features of language processing emerge from particular phasal and cross-frequency coupling properties of neural oscillations; what has been referred to as the language 'oscillome.' It is expected that basic aspects of the language oscillome result from genetic guidance, what we will here call the language 'oscillogenome,' for which we will put forward a list of candidate genes. We have considered genes for altered brain rhythmicity in conditions involving language deficits: autism spectrum disorders, schizophrenia, specific language impairment and dyslexia. These selected genes map on to aspects of brain function, particularly on to neurotransmitter function. We stress that caution should be adopted in the construction of any oscillogenome, given the range of potential roles particular localized frequency bands have in cognition. Our aim is to propose a set of genome-to-language linking hypotheses that, given testing, would grant explanatory power to brain rhythms with respect to language processing and evolution.Economic and Social Research Council scholarship 1474910Ministerio de Economía y Competitividad (España) FFI2016-78034-C2-2-

    A new unifying account of the roles of neuronal entrainment

    Get PDF
    Rhythms are a fundamental and defining feature of neuronal activity in animals including humans. This rhythmic brain activity interacts in complex ways with rhythms in the internal and external environment through the phenomenon of ‘neuronal entrainment’, which is attracting increasing attention due to its suggested role in a multitude of sensory and cognitive processes. Some senses, such as touch and vision, sample the environment rhythmically, while others, like audition, are faced with mostly rhythmic inputs. Entrainment couples rhythmic brain activity to external and internal rhythmic events, serving fine-grained routing and modulation of external and internal signals across multiple spatial and temporal hierarchies. This interaction between a brain and its environment can be experimentally investigated and even modified by rhythmic sensory stimuli or invasive and non-invasive neuromodulation techniques. We provide a comprehensive overview of the topic and propose a theoretical framework of how neuronal entrainment dynamically structures information from incoming neuronal, bodily and environmental sources. We discuss the different types of neuronal entrainment, the conceptual advances in the field, and converging evidence for general principles

    Manipulation of the Working Memory Performance in Humans using Transcranial Alternating Current Stimulation over the Frontoparietal Network

    Get PDF
    The working memory (WM) is a key mechanism that ensures complex behavior in humans. It requires the bilateral activation of the fronto-parietal brain network and has been subdivided on the phonological loop, which processes numbers, semantics and auditory-verbal information, with lateralized activation towards the left hemisphere, and the visuo-spatial sketchpad, which mainly operates in the right hemisphere (Baddeley and Hitch 1974; Sauseng et al. 2005; Müller and Knight 2006; Baddeley 2012; Eriksson et al. 2015). This neural system maintains constant long-range communications within itself and with other cognitive systems through neuronal oscillations. This work aimed to show a causal relationship between visuo-spatial WM functions and the mechanism of fronto-parietal oscillatory connectivity – the theta phase coherence. To reach our aim, two experiments were conducted. Our first hypothesis was that the WM network operates by phase connectivity. The results of the electroencephalographic (EEG) experiment demonstrated significant theta coherence during the WM events. Our second hypothesis was that it would be feasible to interfere with the WM through bi-hemispheric transcranial alternating current stimulation (tACS) and thus change phase connectivity. To show causal effects of theta coherence, behavioral changes in subjects under fronto-parietal theta-tACS bi-laterally, were analyzed. We found that desynchronization of theta phase relations in the fronto-parietal network led to an impairment in the WM performance. Synchronization of the fronto-parietal network had no significant effect on the group level, but individual analysis revealed a tendency for improvement of the WM for subjects with low baseline performance. These results show that optimally balanced theta coherence in the fronto-parietal network is a prerequisite for the ideal WM functions in humans.2018-11-2

    Oscillatory multiplexing of neural population codes for interval timing and working memory

    Get PDF
    Interval timing and working memory are critical components of cognition that are supported by neural oscillations in prefrontal-striatal-hippocampal circuits. In this review, the properties of interval timing and working memory are explored in terms of behavioral, anatomical, pharmacological, and neurophysiological findings. We then describe the various neurobiological theories that have been developed to explain these cognitive processes - largely independent of each other. Following this, a coupled excitatory - inhibitory oscillation (EIO) model of temporal processing is proposed to address the shared oscillatory properties of interval timing and working memory. Using this integrative approach, we describe a hybrid model explaining how interval timing and working memory can originate from the same oscillatory processes, but differ in terms of which dimension of the neural oscillation is utilized for the extraction of item, temporal order, and duration information. This extension of the striatal beat-frequency (SBF) model of interval timing (Matell and Meck, 2000, 2004) is based on prefrontal-striatal-hippocampal circuit dynamics and has direct relevance to the pathophysiological distortions observed in time perception and working memory in a variety of psychiatric and neurological conditions. (C) 2014 Elsevier Ltd. All rights reserved.</p
    • …
    corecore