1,428 research outputs found

    Explaining Explanations in AI

    Get PDF
    Recent work on interpretability in machine learning and AI has focused on the building of simplified models that approximate the true criteria used to make decisions. These models are a useful pedagogical device for teaching trained professionals how to predict what decisions will be made by the complex system, and most importantly how the system might break. However, when considering any such model it’s important to remember Box’s maxim that "All models are wrong but some are useful." We focus on the distinction between these models and explanations in philosophy and sociology. These models can be understood as a "do it yourself kit" for explanations, allowing a practitioner to directly answer "what if questions" or generate contrastive explanations without external assistance. Although a valuable ability, giving these models as explanations appears more difficult than necessary, and other forms of explanation may not have the same trade-offs. We contrast the different schools of thought on what makes an explanation, and suggest that machine learning might benefit from viewing the problem more broadly

    Right for the Right Reasons: Training Differentiable Models by Constraining their Explanations

    Full text link
    Neural networks are among the most accurate supervised learning methods in use today, but their opacity makes them difficult to trust in critical applications, especially when conditions in training differ from those in test. Recent work on explanations for black-box models has produced tools (e.g. LIME) to show the implicit rules behind predictions, which can help us identify when models are right for the wrong reasons. However, these methods do not scale to explaining entire datasets and cannot correct the problems they reveal. We introduce a method for efficiently explaining and regularizing differentiable models by examining and selectively penalizing their input gradients, which provide a normal to the decision boundary. We apply these penalties both based on expert annotation and in an unsupervised fashion that encourages diverse models with qualitatively different decision boundaries for the same classification problem. On multiple datasets, we show our approach generates faithful explanations and models that generalize much better when conditions differ between training and test

    Unfooling Perturbation-Based Post Hoc Explainers

    Full text link
    Monumental advancements in artificial intelligence (AI) have lured the interest of doctors, lenders, judges, and other professionals. While these high-stakes decision-makers are optimistic about the technology, those familiar with AI systems are wary about the lack of transparency of its decision-making processes. Perturbation-based post hoc explainers offer a model agnostic means of interpreting these systems while only requiring query-level access. However, recent work demonstrates that these explainers can be fooled adversarially. This discovery has adverse implications for auditors, regulators, and other sentinels. With this in mind, several natural questions arise - how can we audit these black box systems? And how can we ascertain that the auditee is complying with the audit in good faith? In this work, we rigorously formalize this problem and devise a defense against adversarial attacks on perturbation-based explainers. We propose algorithms for the detection (CAD-Detect) and defense (CAD-Defend) of these attacks, which are aided by our novel conditional anomaly detection approach, KNN-CAD. We demonstrate that our approach successfully detects whether a black box system adversarially conceals its decision-making process and mitigates the adversarial attack on real-world data for the prevalent explainers, LIME and SHAP.Comment: Accepted to AAAI-23. 9 pages (not including references and supplemental
    • …
    corecore