2,450 research outputs found

    Understanding user experience of mobile video: Framework, measurement, and optimization

    Get PDF
    Since users have become the focus of product/service design in last decade, the term User eXperience (UX) has been frequently used in the field of Human-Computer-Interaction (HCI). Research on UX facilitates a better understanding of the various aspects of the user’s interaction with the product or service. Mobile video, as a new and promising service and research field, has attracted great attention. Due to the significance of UX in the success of mobile video (Jordan, 2002), many researchers have centered on this area, examining users’ expectations, motivations, requirements, and usage context. As a result, many influencing factors have been explored (Buchinger, Kriglstein, Brandt & Hlavacs, 2011; Buchinger, Kriglstein & Hlavacs, 2009). However, a general framework for specific mobile video service is lacking for structuring such a great number of factors. To measure user experience of multimedia services such as mobile video, quality of experience (QoE) has recently become a prominent concept. In contrast to the traditionally used concept quality of service (QoS), QoE not only involves objectively measuring the delivered service but also takes into account user’s needs and desires when using the service, emphasizing the user’s overall acceptability on the service. Many QoE metrics are able to estimate the user perceived quality or acceptability of mobile video, but may be not enough accurate for the overall UX prediction due to the complexity of UX. Only a few frameworks of QoE have addressed more aspects of UX for mobile multimedia applications but need be transformed into practical measures. The challenge of optimizing UX remains adaptations to the resource constrains (e.g., network conditions, mobile device capabilities, and heterogeneous usage contexts) as well as meeting complicated user requirements (e.g., usage purposes and personal preferences). In this chapter, we investigate the existing important UX frameworks, compare their similarities and discuss some important features that fit in the mobile video service. Based on the previous research, we propose a simple UX framework for mobile video application by mapping a variety of influencing factors of UX upon a typical mobile video delivery system. Each component and its factors are explored with comprehensive literature reviews. The proposed framework may benefit in user-centred design of mobile video through taking a complete consideration of UX influences and in improvement of mobile videoservice quality by adjusting the values of certain factors to produce a positive user experience. It may also facilitate relative research in the way of locating important issues to study, clarifying research scopes, and setting up proper study procedures. We then review a great deal of research on UX measurement, including QoE metrics and QoE frameworks of mobile multimedia. Finally, we discuss how to achieve an optimal quality of user experience by focusing on the issues of various aspects of UX of mobile video. In the conclusion, we suggest some open issues for future study

    CHORUS Deliverable 3.3: Vision Document - Intermediate version

    Get PDF
    The goal of the CHORUS vision document is to create a high level vision on audio-visual search engines in order to give guidance to the future R&D work in this area (in line with the mandate of CHORUS as a Coordination Action). This current intermediate draft of the CHORUS vision document (D3.3) is based on the previous CHORUS vision documents D3.1 to D3.2 and on the results of the six CHORUS Think-Tank meetings held in March, September and November 2007 as well as in April, July and October 2008, and on the feedback from other CHORUS events. The outcome of the six Think-Thank meetings will not just be to the benefit of the participants which are stakeholders and experts from academia and industry – CHORUS, as a coordination action of the EC, will feed back the findings (see Summary) to the projects under its purview and, via its website, to the whole community working in the domain of AV content search. A few subjections of this deliverable are to be completed after the eights (and presumably last) Think-Tank meeting in spring 2009

    Enhancing Video Recommendation Using Multimedia Content

    Get PDF
    Video recordings are complex media types. When we watch a movie, we can effortlessly register a lot of details conveyed to us (by the author) through different multimedia channels, in particular, the audio and visual modalities. To date, majority of movie recommender systems use collaborative filtering (CF) models or content-based filtering (CBF) relying on metadata (e.g., editorial such as genre or wisdom of the crowd such as user-generated tags) at their core since they are human-generated and are assumed to cover the 'content semantics' of movies by a great degree. The information obtained from multimedia content and learning from muli-modal sources (e.g., audio, visual and metadata) on the other hand, offers the possibility of uncovering relationships between modalities and obtaining an in-depth understanding of natural phenomena occurring in a video. These discerning characteristics of heterogeneous feature sets meet users' differing information needs. In the context of this Ph.D. thesis [9], which is briefly summarized in the current extended abstract, approaches to automated extraction of multimedia information from videos and their integration with video recommender systems have been elaborated, implemented, and analyzed. Variety of tasks related to movie recommendation using multimedia content have been studied. The results of this thesis can motivate the fact that recommender system research can benefit from knowledge in multimedia signal processing and machine learning established over the last decades for solving various recommendation tasks

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Current Challenges and Visions in Music Recommender Systems Research

    Full text link
    Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field

    FMMRec: Fairness-aware Multimodal Recommendation

    Full text link
    Recently, multimodal recommendations have gained increasing attention for effectively addressing the data sparsity problem by incorporating modality-based representations. Although multimodal recommendations excel in accuracy, the introduction of different modalities (e.g., images, text, and audio) may expose more users' sensitive information (e.g., gender and age) to recommender systems, resulting in potentially more serious unfairness issues. Despite many efforts on fairness, existing fairness-aware methods are either incompatible with multimodal scenarios, or lead to suboptimal fairness performance due to neglecting sensitive information of multimodal content. To achieve counterfactual fairness in multimodal recommendations, we propose a novel fairness-aware multimodal recommendation approach (dubbed as FMMRec) to disentangle the sensitive and non-sensitive information from modal representations and leverage the disentangled modal representations to guide fairer representation learning. Specifically, we first disentangle biased and filtered modal representations by maximizing and minimizing their sensitive attribute prediction ability respectively. With the disentangled modal representations, we mine the modality-based unfair and fair (corresponding to biased and filtered) user-user structures for enhancing explicit user representation with the biased and filtered neighbors from the corresponding structures, followed by adversarially filtering out sensitive information. Experiments on two real-world public datasets demonstrate the superiority of our FMMRec relative to the state-of-the-art baselines. Our source code is available at https://anonymous.4open.science/r/FMMRec

    Towards Evaluating User Profiling Methods Based on Explicit Ratings on Item Features

    Get PDF
    In order to improve the accuracy of recommendations, many recommender systems nowadays use side information beyond the user rating matrix, such as item content. These systems build user profiles as estimates of users' interest on content (e.g., movie genre, director or cast) and then evaluate the performance of the recommender system as a whole e.g., by their ability to recommend relevant and novel items to the target user. The user profile modelling stage, which is a key stage in content-driven RS is barely properly evaluated due to the lack of publicly available datasets that contain user preferences on content features of items. To raise awareness of this fact, we investigate differences between explicit user preferences and implicit user profiles. We create a dataset of explicit preferences towards content features of movies, which we release publicly. We then compare the collected explicit user feature preferences and implicit user profiles built via state-of-the-art user profiling models. Our results show a maximum average pairwise cosine similarity of 58.07\% between the explicit feature preferences and the implicit user profiles modelled by the best investigated profiling method and considering movies' genres only. For actors and directors, this maximum similarity is only 9.13\% and 17.24\%, respectively. This low similarity between explicit and implicit preference models encourages a more in-depth study to investigate and improve this important user profile modelling step, which will eventually translate into better recommendations

    Do Users Behave Similarly in VR? Investigation of the User Influence on the System Design

    Get PDF
    With the overarching goal of developing user-centric Virtual Reality (VR) systems, a new wave of studies focused on understanding how users interact in VR environments has recently emerged. Despite the intense efforts, however, current literature still does not provide the right framework to fully interpret and predict users’ trajectories while navigating in VR scenes. This work advances the state-of-the-art on both the study of users’ behaviour in VR and the user-centric system design. In more detail, we complement current datasets by presenting a publicly available dataset that provides navigation trajectories acquired for heterogeneous omnidirectional videos and different viewing platforms—namely, head-mounted display, tablet, and laptop. We then present an exhaustive analysis on the collected data to better understand navigation in VR across users, content, and, for the first time, across viewing platforms. The novelty lies in the user-affinity metric, proposed in this work to investigate users’ similarities when navigating within the content. The analysis reveals useful insights on the effect of device and content on the navigation, which could be precious considerations from the system design perspective. As a case study of the importance of studying users’ behaviour when designing VR systems, we finally propose a user-centric server optimisation. We formulate an integer linear program that seeks the best stored set of omnidirectional content that minimises encoding and storage cost while maximising the user’s experience. This is posed while taking into account network dynamics, type of video content, and also user population interactivity. Experimental results prove that our solution outperforms common company recommendations in terms of experienced quality but also in terms of encoding and storage, achieving a savings up to 70%. More importantly, we highlight a strong correlation between the storage cost and the user-affinity metric, showing the impact of the latter in the system architecture design

    Help I'm surrounded

    Get PDF
    A dimly lit auditorium, the smell of popcorn and hot-dogs accompanied by the sound of fizzy drinks slurped through straws; the lights dim and a hush of expectation descends, sound fades in from all around, drawing the audience into the illusion of another reality. This is the world of the cinema, but is it possible to recreate this cinematic surround sound experience in the home? In order to address this question it is necessary to understand what is meant by "cinematic" surround sound and to consider some of the challenges faced by those seeking to translate it to the home environment. This article examines these issues through an exploration of the development of surround sound in the cinema and its transference to the home and concludes with a tentative look towards possible future developments

    "You Tube and I Find" - personalizing multimedia content access

    Full text link
    Recent growth in broadband access and proliferation of small personal devices that capture images and videos has led to explosive growth of multimedia content available everywhereVfrom personal disks to the Web. While digital media capture and upload has become nearly universal with newer device technology, there is still a need for better tools and technologies to search large collections of multimedia data and to find and deliver the right content to a user according to her current needs and preferences. A renewed focus on the subjective dimension in the multimedia lifecycle, fromcreation, distribution, to delivery and consumption, is required to address this need beyond what is feasible today. Integration of the subjective aspects of the media itselfVits affective, perceptual, and physiological potential (both intended and achieved), together with those of the users themselves will allow for personalizing the content access, beyond today’s facility. This integration, transforming the traditional multimedia information retrieval (MIR) indexes to more effectively answer specific user needs, will allow a richer degree of personalization predicated on user intention and mode of interaction, relationship to the producer, content of the media, and their history and lifestyle. In this paper, we identify the challenges in achieving this integration, current approaches to interpreting content creation processes, to user modelling and profiling, and to personalized content selection, and we detail future directions. The structure of the paper is as follows: In Section I, we introduce the problem and present some definitions. In Section II, we present a review of the aspects of personalized content and current approaches for the same. Section III discusses the problem of obtaining metadata that is required for personalized media creation and present eMediate as a case study of an integrated media capture environment. Section IV presents the MAGIC system as a case study of capturing effective descriptive data and putting users first in distributed learning delivery. The aspects of modelling the user are presented as a case study in using user’s personality as a way to personalize summaries in Section V. Finally, Section VI concludes the paper with a discussion on the emerging challenges and the open problems
    • …
    corecore