21,802 research outputs found

    Energy efficiency of error correction on wireless systems

    Get PDF
    Since high error rates are inevitable to the wireless environment, energy-efficient error-control is an important issue for mobile computing systems. We have studied the energy efficiency of two different error correction mechanisms and have measured the efficiency of an implementation in software. We show that it is not sufficient to concentrate on the energy efficiency of error control mechanisms only, but the required extra energy consumed by the wireless interface should be incorporated as well. A model is presented that can be used to determine an energy-efficient error correction scheme of a minimal system consisting of a general purpose processor and a wireless interface. As an example we have determined these error correction parameters on two systems with a WaveLAN interfac

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    A survey of digital television broadcast transmission techniques

    No full text
    This paper is a survey of the transmission techniques used in digital television (TV) standards worldwide. With the increase in the demand for High-Definition (HD) TV, video-on-demand and mobile TV services, there was a real need for more bandwidth-efficient, flawless and crisp video quality, which motivated the migration from analogue to digital broadcasting. In this paper we present a brief history of the development of TV and then we survey the transmission technology used in different digital terrestrial, satellite, cable and mobile TV standards in different parts of the world. First, we present the Digital Video Broadcasting standards developed in Europe for terrestrial (DVB-T/T2), for satellite (DVB-S/S2), for cable (DVB-C) and for hand-held transmission (DVB-H). We then describe the Advanced Television System Committee standards developed in the USA both for terrestrial (ATSC) and for hand-held transmission (ATSC-M/H). We continue by describing the Integrated Services Digital Broadcasting standards developed in Japan for Terrestrial (ISDB-T) and Satellite (ISDB-S) transmission and then present the International System for Digital Television (ISDTV), which was developed in Brazil by adopteding the ISDB-T physical layer architecture. Following the ISDTV, we describe the Digital Terrestrial television Multimedia Broadcast (DTMB) standard developed in China. Finally, as a design example, we highlight the physical layer implementation of the DVB-T2 standar

    Content-access QoS in peer-to-peer networks using a fast MDS erasure code

    Get PDF
    This paper describes an enhancement of content access Quality of Service in peer to peer (P2P) networks. The main idea is to use an erasure code to distribute the information over the peers. This distribution increases the users’ choice on disseminated encoded data and therefore statistically enhances the overall throughput of the transfer. A performance evaluation based on an original model using the results of a measurement campaign of sequential and parallel downloads in a real P2P network over Internet is presented. Based on a bandwidth distribution, statistical content-access QoS are guaranteed in function of both the content replication level in the network and the file dissemination strategies. A simple application in the context of media streaming is proposed. Finally, the constraints on the erasure code related to the proposed system are analysed and a new fast MDS erasure code is proposed, implemented and evaluated

    Geometric approach to error correcting codes and reconstruction of signals

    Full text link
    We develop an approach through geometric functional analysis to error correcting codes and to reconstruction of signals from few linear measurements. An error correcting code encodes an n-letter word x into an m-letter word y in such a way that x can be decoded correctly when any r letters of y are corrupted. We prove that most linear orthogonal transformations Q from R^n into R^m form efficient and robust robust error correcting codes over reals. The decoder (which corrects the corrupted components of y) is the metric projection onto the range of Q in the L_1 norm. An equivalent problem arises in signal processing: how to reconstruct a signal that belongs to a small class from few linear measurements? We prove that for most sets of Gaussian measurements, all signals of small support can be exactly reconstructed by the L_1 norm minimization. This is a substantial improvement of recent results of Donoho and of Candes and Tao. An equivalent problem in combinatorial geometry is the existence of a polytope with fixed number of facets and maximal number of lower-dimensional facets. We prove that most sections of the cube form such polytopes.Comment: 17 pages, 3 figure

    ENHANCING USERS’ EXPERIENCE WITH SMART MOBILE TECHNOLOGY

    Get PDF
    The aim of this thesis is to investigate mobile guides for use with smartphones. Mobile guides have been successfully used to provide information, personalisation and navigation for the user. The researcher also wanted to ascertain how and in what ways mobile guides can enhance users' experience. This research involved designing and developing web based applications to run on smartphones. Four studies were conducted, two of which involved testing of the particular application. The applications tested were a museum mobile guide application and a university mobile guide mapping application. Initial testing examined the prototype work for the ‘Chronology of His Majesty Sultan Haji Hassanal Bolkiah’ application. The results were used to assess the potential of using similar mobile guides in Brunei Darussalam’s museums. The second study involved testing of the ‘Kent LiveMap’ application for use at the University of Kent. Students at the university tested this mapping application, which uses crowdsourcing of information to provide live data. The results were promising and indicate that users' experience was enhanced when using the application. Overall results from testing and using the two applications that were developed as part of this thesis show that mobile guides have the potential to be implemented in Brunei Darussalam’s museums and on campus at the University of Kent. However, modifications to both applications are required to fulfil their potential and take them beyond the prototype stage in order to be fully functioning and commercially viable

    S-PRAC: Fast Partial Packet Recovery with Network Coding in Very Noisy Wireless Channels

    Full text link
    Well-known error detection and correction solutions in wireless communications are slow or incur high transmission overhead. Recently, notable solutions like PRAC and DAPRAC, implementing partial packet recovery with network coding, could address these problems. However, they perform slowly when there are many errors. We propose S-PRAC, a fast scheme for partial packet recovery, particularly designed for very noisy wireless channels. S-PRAC improves on DAPRAC. It divides each packet into segments consisting of a fixed number of small RLNC encoded symbols and then attaches a CRC code to each segment and one to each coded packet. Extensive simulations show that S-PRAC can detect and correct errors quickly. It also outperforms DAPRAC significantly when the number of errors is high
    corecore