3,047 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Computational techniques to interpret the neural code underlying complex cognitive processes

    Get PDF
    Advances in large-scale neural recording technology have significantly improved the capacity to further elucidate the neural code underlying complex cognitive processes. This thesis aimed to investigate two research questions in rodent models. First, what is the role of the hippocampus in memory and specifically what is the underlying neural code that contributes to spatial memory and navigational decision-making. Second, how is social cognition represented in the medial prefrontal cortex at the level of individual neurons. To start, the thesis begins by investigating memory and social cognition in the context of healthy and diseased states that use non-invasive methods (i.e. fMRI and animal behavioural studies). The main body of the thesis then shifts to developing our fundamental understanding of the neural mechanisms underpinning these cognitive processes by applying computational techniques to ana lyse stable large-scale neural recordings. To achieve this, tailored calcium imaging and behaviour preprocessing computational pipelines were developed and optimised for use in social interaction and spatial navigation experimental analysis. In parallel, a review was conducted on methods for multivariate/neural population analysis. A comparison of multiple neural manifold learning (NML) algorithms identified that non linear algorithms such as UMAP are more adaptable across datasets of varying noise and behavioural complexity. Furthermore, the review visualises how NML can be applied to disease states in the brain and introduces the secondary analyses that can be used to enhance or characterise a neural manifold. Lastly, the preprocessing and analytical pipelines were combined to investigate the neural mechanisms in volved in social cognition and spatial memory. The social cognition study explored how neural firing in the medial Prefrontal cortex changed as a function of the social dominance paradigm, the "Tube Test". The univariate analysis identified an ensemble of behavioural-tuned neurons that fire preferentially during specific behaviours such as "pushing" or "retreating" for the animal’s own behaviour and/or the competitor’s behaviour. Furthermore, in dominant animals, the neural population exhibited greater average firing than that of subordinate animals. Next, to investigate spatial memory, a spatial recency task was used, where rats learnt to navigate towards one of three reward locations and then recall the rewarded location of the session. During the task, over 1000 neurons were recorded from the hippocampal CA1 region for five rats over multiple sessions. Multivariate analysis revealed that the sequence of neurons encoding an animal’s spatial position leading up to a rewarded location was also active in the decision period before the animal navigates to the rewarded location. The result posits that prospective replay of neural sequences in the hippocampal CA1 region could provide a mechanism by which decision-making is supported

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Deep generative models for network data synthesis and monitoring

    Get PDF
    Measurement and monitoring are fundamental tasks in all networks, enabling the down-stream management and optimization of the network. Although networks inherently have abundant amounts of monitoring data, its access and effective measurement is another story. The challenges exist in many aspects. First, the inaccessibility of network monitoring data for external users, and it is hard to provide a high-fidelity dataset without leaking commercial sensitive information. Second, it could be very expensive to carry out effective data collection to cover a large-scale network system, considering the size of network growing, i.e., cell number of radio network and the number of flows in the Internet Service Provider (ISP) network. Third, it is difficult to ensure fidelity and efficiency simultaneously in network monitoring, as the available resources in the network element that can be applied to support the measurement function are too limited to implement sophisticated mechanisms. Finally, understanding and explaining the behavior of the network becomes challenging due to its size and complex structure. Various emerging optimization-based solutions (e.g., compressive sensing) or data-driven solutions (e.g. deep learning) have been proposed for the aforementioned challenges. However, the fidelity and efficiency of existing methods cannot yet meet the current network requirements. The contributions made in this thesis significantly advance the state of the art in the domain of network measurement and monitoring techniques. Overall, we leverage cutting-edge machine learning technology, deep generative modeling, throughout the entire thesis. First, we design and realize APPSHOT , an efficient city-scale network traffic sharing with a conditional generative model, which only requires open-source contextual data during inference (e.g., land use information and population distribution). Second, we develop an efficient drive testing system — GENDT, based on generative model, which combines graph neural networks, conditional generation, and quantified model uncertainty to enhance the efficiency of mobile drive testing. Third, we design and implement DISTILGAN, a high-fidelity, efficient, versatile, and real-time network telemetry system with latent GANs and spectral-temporal networks. Finally, we propose SPOTLIGHT , an accurate, explainable, and efficient anomaly detection system of the Open RAN (Radio Access Network) system. The lessons learned through this research are summarized, and interesting topics are discussed for future work in this domain. All proposed solutions have been evaluated with real-world datasets and applied to support different applications in real systems

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Speech-based automatic depression detection via biomarkers identification and artificial intelligence approaches

    Get PDF
    Depression has become one of the most prevalent mental health issues, affecting more than 300 million people all over the world. However, due to factors such as limited medical resources and accessibility to health care, there are still a large number of patients undiagnosed. In addition, the traditional approaches to depression diagnosis have limitations because they are usually time-consuming, and depend on clinical experience that varies across different clinicians. From this perspective, the use of automatic depression detection can make the diagnosis process much faster and more accessible. In this thesis, we present the possibility of using speech for automatic depression detection. This is based on the findings in neuroscience that depressed patients have abnormal cognition mechanisms thus leading to the speech differs from that of healthy people. Therefore, in this thesis, we show two ways of benefiting from automatic depression detection, i.e., identifying speech markers of depression and constructing novel deep learning models to improve detection accuracy. The identification of speech markers tries to capture measurable depression traces left in speech. From this perspective, speech markers such as speech duration, pauses and correlation matrices are proposed. Speech duration and pauses take speech fluency into account, while correlation matrices represent the relationship between acoustic features and aim at capturing psychomotor retardation in depressed patients. Experimental results demonstrate that these proposed markers are effective at improving the performance in recognizing depressed speakers. In addition, such markers show statistically significant differences between depressed patients and non-depressed individuals, which explains the possibility of using these markers for depression detection and further confirms that depression leaves detectable traces in speech. In addition to the above, we propose an attention mechanism, Multi-local Attention (MLA), to emphasize depression-relevant information locally. Then we analyse the effectiveness of MLA on performance and efficiency. According to the experimental results, such a model can significantly improve performance and confidence in the detection while reducing the time required for recognition. Furthermore, we propose Cross-Data Multilevel Attention (CDMA) to emphasize different types of depression-relevant information, i.e., specific to each type of speech and common to both, by using multiple attention mechanisms. Experimental results demonstrate that the proposed model is effective to integrate different types of depression-relevant information in speech, improving the performance significantly for depression detection

    Meta-learning algorithms and applications

    Get PDF
    Meta-learning in the broader context concerns how an agent learns about their own learning, allowing them to improve their learning process. Learning how to learn is not only beneficial for humans, but it has also shown vast benefits for improving how machines learn. In the context of machine learning, meta-learning enables models to improve their learning process by selecting suitable meta-parameters that influence the learning. For deep learning specifically, the meta-parameters typically describe details of the training of the model but can also include description of the model itself - the architecture. Meta-learning is usually done with specific goals in mind, for example trying to improve ability to generalize or learn new concepts from only a few examples. Meta-learning can be powerful, but it comes with a key downside: it is often computationally costly. If the costs would be alleviated, meta-learning could be more accessible to developers of new artificial intelligence models, allowing them to achieve greater goals or save resources. As a result, one key focus of our research is on significantly improving the efficiency of meta-learning. We develop two approaches: EvoGrad and PASHA, both of which significantly improve meta-learning efficiency in two common scenarios. EvoGrad allows us to efficiently optimize the value of a large number of differentiable meta-parameters, while PASHA enables us to efficiently optimize any type of meta-parameters but fewer in number. Meta-learning is a tool that can be applied to solve various problems. Most commonly it is applied for learning new concepts from only a small number of examples (few-shot learning), but other applications exist too. To showcase the practical impact that meta-learning can make in the context of neural networks, we use meta-learning as a novel solution for two selected problems: more accurate uncertainty quantification (calibration) and general-purpose few-shot learning. Both are practically important problems and using meta-learning approaches we can obtain better solutions than the ones obtained using existing approaches. Calibration is important for safety-critical applications of neural networks, while general-purpose few-shot learning tests model's ability to generalize few-shot learning abilities across diverse tasks such as recognition, segmentation and keypoint estimation. More efficient algorithms as well as novel applications enable the field of meta-learning to make more significant impact on the broader area of deep learning and potentially solve problems that were too challenging before. Ultimately both of them allow us to better utilize the opportunities that artificial intelligence presents

    Improving Cross-Lingual Transfer Learning for Event Detection

    Get PDF
    The widespread adoption of applications powered by Artificial Intelligence (AI) backbones has unquestionably changed the way we interact with the world around us. Applications such as automated personal assistants, automatic question answering, and machine-based translation systems have become mainstays of modern culture thanks to the recent considerable advances in Natural Language Processing (NLP) research. Nonetheless, with over 7000 spoken languages in the world, there still remain a considerable number of marginalized communities that are unable to benefit from these technological advancements largely due to the language they speak. Cross-Lingual Learning (CLL) looks to address this issue by transferring the knowledge acquired from a popular, high-resource source language (e.g., English, Chinese, or Spanish) to a less favored, lower-resourced target language (e.g., Urdu or Swahili). This dissertation leverages the Event Detection (ED) sub-task of Information Extraction (IE) as a testbed and presents three novel approaches that improve cross-lingual transfer learning from distinct perspectives: (1) direct knowledge transfer, (2) hybrid knowledge transfer, and (3) few-shot learning

    Self-supervised learning for transferable representations

    Get PDF
    Machine learning has undeniably achieved remarkable advances thanks to large labelled datasets and supervised learning. However, this progress is constrained by the labour-intensive annotation process. It is not feasible to generate extensive labelled datasets for every problem we aim to address. Consequently, there has been a notable shift in recent times toward approaches that solely leverage raw data. Among these, self-supervised learning has emerged as a particularly powerful approach, offering scalability to massive datasets and showcasing considerable potential for effective knowledge transfer. This thesis investigates self-supervised representation learning with a strong focus on computer vision applications. We provide a comprehensive survey of self-supervised methods across various modalities, introducing a taxonomy that categorises them into four distinct families while also highlighting practical considerations for real-world implementation. Our focus thenceforth is on the computer vision modality, where we perform a comprehensive benchmark evaluation of state-of-the-art self supervised models against many diverse downstream transfer tasks. Our findings reveal that self-supervised models often outperform supervised learning across a spectrum of tasks, albeit with correlations weakening as tasks transition beyond classification, particularly for datasets with distribution shifts. Digging deeper, we investigate the influence of data augmentation on the transferability of contrastive learners, uncovering a trade-off between spatial and appearance-based invariances that generalise to real-world transformations. This begins to explain the differing empirical performances achieved by self-supervised learners on different downstream tasks, and it showcases the advantages of specialised representations produced with tailored augmentation. Finally, we introduce a novel self-supervised pre-training algorithm for object detection, aligning pre-training with downstream architecture and objectives, leading to reduced localisation errors and improved label efficiency. In conclusion, this thesis contributes a comprehensive understanding of self-supervised representation learning and its role in enabling effective transfer across computer vision tasks

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp
    • …
    corecore