60 research outputs found

    A Review of Cellular Networks: Applications, Benefits and Limitations

    Get PDF
    Over decades the world has witnessed stepwise evolution in Cellular networks technology and mobile network industry which have transformed nation’s economy and created job opportunities since 1970. The stepwise evolution of the cellular networks from first generation (1G) to fifth generation (5G) have shown tremendous increase in technology, benefits, user demand and applications.  As new generation of cellular network unfold, the challenges and limitations of preceded generations are being tackled as always depicted in the design architecture of each new generation. The first generation (1G) cellular network was based on analogue and was able to cater for mobile voice transmission but posed some challenges in terms of quality of service and security of network. Second generation (2G) came with the introduction of digitally encrypted technology and greater security for sender and receiver with services such as text messages and MMS. Third generation (3G) was developed to offer high speed data and multimedia connections to subscribers.  Fourth generation evolves from 3G with higher data rate, lower latency, greater spectral efficiency and simple protocol architecture with efficient multicast than its predecessors.  Fifth-generation (5G) networks  is being deployed to meet growing demands for data from consumer and industrial users  and  to enable the use of advanced technologies  such as smart city applications, autonomous vehicles and navigation. The envisioned sixth generation (6G) of cellular network is expected to witness an unparalleled revolution that would significantly distinguish it from the existing generations and will drastically re-shape the wireless evolution from "connected thing to connected intelligence. This paper provides a comprehensive review of cellular networks applications and challenges from 1G to 6G. Keywords: 1G, 2G, 3G, 4G, 5G, 6G, Applications  Benefits, and Limitations DOI: 10.7176/NCS/11-04 Publication date: December 31st 202

    An auctioning mechanism for green radio

    Full text link

    Distributed optimisation techniques for wireless networks

    Get PDF
    Alongside the ever increasing traffic demand, the fifth generation (5G) cellular network architecture is being proposed to provide better quality of service, increased data rate, decreased latency, and increased capacity. Without any doubt, the 5G cellular network will comprise of ultra-dense networks and multiple input multiple output technologies. This will make the current centralised solutions impractical due to increased complexity. Moreover, the amount of coordination information that needs to be transported over the backhaul links will be increased. Distributed or decentralised solutions are promising to provide better alternatives. This thesis proposes new distributed algorithms for wireless networks which aim to reduce the amount of system overheads in the backhaul links and the system complexity. The analysis of conflicts amongst transmitters, and resource allocation are conducted via the use of game theory, convex optimisation, and auction theory. Firstly, game-theoretic model is used to analyse a mixed quality of service (QoS) strategic non-cooperative game (SNG), for a two-user multiple-input single-output (MISO) interference channel. The players are considered to have different objectives. Following this, the mixed QoS SNG is extended to a multicell multiuser network in terms of signal-to-interference-and-noise ratio (SINR) requirement. In the multicell multiuser setting, each transmitter is assumed to be serving real time users (RTUs) and non-real time users (NRTUs), simultaneously. A novel mixed QoS SNG algorithm is proposed, with its operating point identified as the Nash equilibrium-mixed QoS (NE-mixed QoS). Nash, Kalai-Smorodinsky, and Egalitarian bargain solutions are then proposed to improve the performance of the NE-mixed QoS. The performance of the bargain solutions are observed to be comparable to the centralised solutions. Secondly, user offloading and user association problems are addressed for small cells using auction theory. The main base station wishes to offload some of its users to privately owned small cell access points. A novel bid-wait-auction (BWA) algorithm, which allows single-item bidding at each auction round, is designed to decompose the combinatorial mathematical nature of the problem. An analysis on the existence and uniqueness of the dominant strategy equilibrium is conducted. The BWA is then used to form the forward BWA (FBWA) and the backward BWA (BBWA). It is observed that the BBWA allows more users to be admitted as compared to the FBWA. Finally, simultaneous multiple-round ascending auction (SMRA), altered SMRA (ASMRA), sequential combinatorial auction with item bidding (SCAIB), and repetitive combinatorial auction with item bidding (RCAIB) algorithms are proposed to perform user offloading and user association for small cells. These algorithms are able to allow bundle bidding. It is then proven that, truthful bidding is individually rational and leads to Walrasian equilibrium. The performance of the proposed auction based algorithms is evaluated. It is observed that the proposed algorithms match the performance of the centralised solutions when the guest users have low target rates. The SCAIB algorithm is shown to be the most preferred as it provides high admission rate and competitive revenue to the bidders

    Microeconomics Inspired Mechanisms to Manage Dynamic Spectrum Access

    Get PDF

    Spectrum Policy and Management

    Get PDF
    This project provides an examination of the FCC’s policies towards spectrum reallocation. The project examines the National Broadband Plan and how the FCC has approached the goals described within it. The demand for broadband communications has increased dramatically in recent years and has resulted in a predicted spectrum deficit in the near future. In addition to a number of spectrum auctions and their winners the project examines how the redistribution of spectrum impacts the broadband community. The project also provides an examination of spectrum reallocation and policy in other countries, to provide a broader view of spectrum policy. Finally the project examines new spectrum technologies and spectrum usage policies to further examine how the US’s spectrum policies should evolve

    Spectrum Utilisation and Management in Cognitive Radio Networks

    Get PDF

    Optimal 4G OFDMA Dynamic Subcarrier and Power Auction-based Allocation towards H.264 Scalable Video Transmission

    Get PDF
    In this paper, authors presented a price maximization scheme for optimal orthogonal frequency division for multiple access (OFDMA) subcarrier allocation for wireless video unicast/multicast scenarios. They formulate a pricing based video utility function for H.264 based wireless scalable video streaming, thereby achieving a trade-off between price and QoS fairness. These parametric models for scalable video rate and quality characterization arederived from the standard JSVM reference codec for the SVC extension of the H.264/AVC, and hence are directly applicable in practical wireless scenarios. With the aid of these models, they proposed auction based framework for revenue maximization of the transmitted video streams in the unicast and multicast 4G scenario. A closedform expression is derived for the optimal scalable video quantization step-size subject to the constraints of theunicast/multicast users in 4G wireless systems. This yields the optimal OFDMA subcarrier allocation for multi-userscalable video multiplexing. The proposed scheme is cognizant of the user modulation and code rate, and is henceamenable to adaptive modulation and coding (AMC) feature of 4G wireless networks. Further, they also consider aframework for optimal power allocation based on a novel revenue maximization scheme in OFDMA based wireless broadband 4G systems employing auction bidding models. This is formulated as a constrained convex optimization problem towards sum video utility maximization. We observe that as the demand for a video stream increases inbroadcast/multicast scenarios, higher power is allocated to the corresponding video stream leading to a gain in the overall revenue/utility. We simulate a standard WiMAX based 4G video transmission scenario to validate the performance of the proposed optimal 4G scalable video resource allocation schemes. Simulations illustrate that the proposed optimal band width and power allocation schemes result in a significant performance improvement over the suboptimal equal resource allocation schemes for scalable video transmission.Defence Science Journal, 2013, 63(1), pp.15-24, DOI:http://dx.doi.org/10.14429/dsj.63.375

    Realizing mobile multimedia systems over emerging fourth-generation wireless technologies

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2001.Includes bibliographical references (p. [161]-167) and index.by Pei-Jeng Kuo.M.Eng

    A slotted-CDMA based wireless-ATM link layer : guaranteeing QoS over a wireless link.

    Get PDF
    Thesis (M.Sc.)-University of Natal, Durban, 2000.Future wireless networks will have to handle varying combinations of multimedia traffic that present the network with numerous quality of service (QoS) requirements. The continuously growing demand for mobile phones has resulted in radio spectrum becoming a precious resource that cannot be wasted. The current second-generation mobile networks are designed for voice communication and, even with the enhancements being implemented to accommodate data, they cannot efficiently handle the multimedia traffic demands that will be introduced in the near future. This thesis begins with a survey of existing wireless ATM (WATM) protocols, followed by an examination of some medium access control (MAC) protocols, supporting multimedia traffic, and based on code division multiple access (CDMA) physical layers. A WATM link layer protocol based on a CDMA physical layer, and incorporating techniques from some of the surveyed protocols, is then proposed. The MAC protocol supports a wide range of service requirements by utilising a flexible scheduling algorithm that takes advantage of the graceful degradation of CDMA with increasing user interference to schedule cells for transmission according to their maximum bit error rate (BER) requirements. The data link control (DLC) accommodates the various traffic types by allowing virtual channels (VCs) to make use of forward error correction (FEc) or retransmission techniques. The proposed link layer protocol has been implemented on a Blue Wave Systems DSP board that forms part of Alcatel Altech Telecoms' software radio platform. The details and practicality of the implementation are presented. A simulation model for the protocol has been developed using MIL3 's Opnet Modeler. Hence, both simulated and measured performance results are presented before the thesis concludes with suggestions for improvements and future work
    • …
    corecore