426 research outputs found

    Agent-based distributed manufacturing control: a state-of-the-art survey

    Get PDF
    Manufacturing has faced significant changes during the last years, namely the move from a local economy towards a global and competitive economy, with markets demanding for highly customized products of high quality at lower costs, and with short life cycles. In this environment, manufacturing enterprises, to remain competitive, must respond closely to customer demands by improving their flexibility and agility, while maintaining their productivity and quality. Dynamic response to emergence is becoming a key issue in manufacturing field because traditional manufacturing control systems are built upon rigid control architectures, which cannot respond efficiently and effectively to dynamic change. In these circumstances, the current challenge is to develop manufacturing control systems that exhibit intelligence, robustness and adaptation to the environment changes and disturbances. The introduction of multi-agent systems and holonic manufacturing systems paradigms addresses these requirements, bringing the advantages of modularity, decentralization, autonomy, scalability and re- usability. This paper surveys the literature in manufacturing control systems using distributed artificial intelligence techniques, namely multi-agent systems and holonic manufacturing systems principles. The paper also discusses the reasons for the weak adoption of these approaches by industry and points out the challenges and research opportunities for the future

    A Biologist’s View of Individual Cultural Identity for the Study of Cities

    Get PDF
    The behaviour of urban populations is compared with the systems directing behaviour in individuals. This is both a metaphor and a mechanistic parallel. The biological model draws upon recent developments in brain research and psychological and cultural anthropology. The development and operation of the personal value-system are seen as constituting Identity in an individual, and Culture in a community. A mechanism is proposed by which social attachments between individuals lead to the adoption of new values into the system. The ability to differentiate own group from other is seen as intrinsic and socially necessary, made peaceful by specific values and adversarial by others. Identity development is such a complex process that it cannot be predicted in detail, but explicated in retrospect. A model may be useful in understanding conflicts of values, and how some are modifiable and others not.Identity, Cultural meaning system, Values, Attachment, Social identity theory

    The Cord Weekly (March 8, 1990)

    Get PDF

    DRIVE: A Distributed Economic Meta-Scheduler for the Federation of Grid and Cloud Systems

    No full text
    The computational landscape is littered with islands of disjoint resource providers including commercial Clouds, private Clouds, national Grids, institutional Grids, clusters, and data centers. These providers are independent and isolated due to a lack of communication and coordination, they are also often proprietary without standardised interfaces, protocols, or execution environments. The lack of standardisation and global transparency has the effect of binding consumers to individual providers. With the increasing ubiquity of computation providers there is an opportunity to create federated architectures that span both Grid and Cloud computing providers effectively creating a global computing infrastructure. In order to realise this vision, secure and scalable mechanisms to coordinate resource access are required. This thesis proposes a generic meta-scheduling architecture to facilitate federated resource allocation in which users can provision resources from a range of heterogeneous (service) providers. Efficient resource allocation is difficult in large scale distributed environments due to the inherent lack of centralised control. In a Grid model, local resource managers govern access to a pool of resources within a single administrative domain but have only a local view of the Grid and are unable to collaborate when allocating jobs. Meta-schedulers act at a higher level able to submit jobs to multiple resource managers, however they are most often deployed on a per-client basis and are therefore concerned with only their allocations, essentially competing against one another. In a federated environment the widespread adoption of utility computing models seen in commercial Cloud providers has re-motivated the need for economically aware meta-schedulers. Economies provide a way to represent the different goals and strategies that exist in a competitive distributed environment. The use of economic allocation principles effectively creates an open service market that provides efficient allocation and incentives for participation. The major contributions of this thesis are the architecture and prototype implementation of the DRIVE meta-scheduler. DRIVE is a Virtual Organisation (VO) based distributed economic metascheduler in which members of the VO collaboratively allocate services or resources. Providers joining the VO contribute obligation services to the VO. These contributed services are in effect membership “dues” and are used in the running of the VOs operations – for example allocation, advertising, and general management. DRIVE is independent from a particular class of provider (Service, Grid, or Cloud) or specific economic protocol. This independence enables allocation in federated environments composed of heterogeneous providers in vastly different scenarios. Protocol independence facilitates the use of arbitrary protocols based on specific requirements and infrastructural availability. For instance, within a single organisation where internal trust exists, users can achieve maximum allocation performance by choosing a simple economic protocol. In a global utility Grid no such trust exists. The same meta-scheduler architecture can be used with a secure protocol which ensures the allocation is carried out fairly in the absence of trust. DRIVE establishes contracts between participants as the result of allocation. A contract describes individual requirements and obligations of each party. A unique two stage contract negotiation protocol is used to minimise the effect of allocation latency. In addition due to the co-op nature of the architecture and the use of secure privacy preserving protocols, DRIVE can be deployed in a distributed environment without requiring large scale dedicated resources. This thesis presents several other contributions related to meta-scheduling and open service markets. To overcome the perceived performance limitations of economic systems four high utilisation strategies have been developed and evaluated. Each strategy is shown to improve occupancy, utilisation and profit using synthetic workloads based on a production Grid trace. The gRAVI service wrapping toolkit is presented to address the difficulty web enabling existing applications. The gRAVI toolkit has been extended for this thesis such that it creates economically aware (DRIVE-enabled) services that can be transparently traded in a DRIVE market without requiring developer input. The final contribution of this thesis is the definition and architecture of a Social Cloud – a dynamic Cloud computing infrastructure composed of virtualised resources contributed by members of a Social network. The Social Cloud prototype is based on DRIVE and highlights the ease in which dynamic DRIVE markets can be created and used in different domains

    Polynomial Timed Reductions to Solve Computer Security Problems in Access Control, Ethereum Smart Contract, Cloud VM Scheduling, and Logic Locking.

    Get PDF
    This thesis addresses computer security problems in: Access Control, Ethereum Smart Contracts, Cloud VM Scheduling, and Logic Locking. These problems are solved using polynomially timed reductions to 2 complexity classes: PSPACE-Complete and NP-Complete. This thesis is divided into 2 parts, problems reduced to: Model Checking (PSPACE-Complete) and Integer Linear Programming (ILP) (NP-Complete). The PSPACE-Complete problems are: Safety Analysis of Administrative Temporal Role Based Access Control (ATRBAC) Policies, and Safety Analysis of Ethereum Smart Contracts. The NP-Complete problems are: Minimizing Information Leakage in Virtual Machine (VM) Cloud Environments using VM Migrations, and Attacking Logic Locked Circuits using a Reduction to Integer Linear Programming (ILP). In Chapter 3, I create the Cree Administrative Temporal Role Based Access Control (ATRBAC)-Safety solver. Which is a reduction from ATRBAC-Safety to Model Checking. I create 4 general performance techniques which can be utilized in any ATRBAC-Safety solver. 1. Polynomial Time Solving, which is able to solve specific archetypes of ATRBAC-Safety policies using a polynomial timed algorithm. 2. Static Pruning, which includes 2 methods for reducing the size of the policy without effecting the result of the safety query. 3. Abstraction Refinement, which can increase the speed for reachable safety queries by only solving a subset of the original policy. 4. Bound Estimation, which creates a bound on the number of steps from the initial state, where a satisfying state must exist. This is directly used by the model checker's bounded model checking mode, but can be utilized by any solver with a bound limiting parameter. In Chapter 4, I analyze ATRBAC-Safety policies to identify some of the ``sources of complexity'' which make solving ATRBAC-Safety policies difficult. I provide analysis of the sources of complexity that exists in the previously published datasets [128,90,54]. I perform analysis of Cree's performance techniques on the previous datasets. I create 2 new datasets, which are shown to be hard instances of ATRBAC-Safety. I analyze the new datasets to show how they achieve this hardness and how they differ from each other and the previous datasets. In Chapter 5, I create a novel reduction from a Reduced-Solidity Smart Contract, subset of available Solidity features, to Model Checking. This reduction reduces Reduced-Solidity Smart Contract into a Finite State Machine and then reduces to an instance of a Model Checking problem. This provides the ability to test smart contracts published on the Ethereum blockchain and test if there exists bugs or malicious code. I perform empirical analysis on select Smart contracts. In Chapter 6, I create 2 methods for generating instances of ATRBAC policies into Solidity Smart Contracts. The first method is the Generic ATRBAC Smart Contract. This method requires no modification before deployment. After deployed the owner is able to create, and maintain, the policy using special access functions. The special action functions are automated with code that converts an ATRBAC policy into a series of transactions the owner can run. The second method is the Baked ATRBAC Smart Contract. This method takes an ATRBAC policy and reduces it to a Smart Contract instance with no special access functions. The smart contract can then be deployed by anyone, and that person will have no special access. I perform an empirical analysis on the setup costs, transaction costs, and security each provides. In Chapter 7, I create a new reduction from Minimizing Information Leakage via Virtual Machine (VM) Migrations to Integer Linear Programming (ILP). I compare a polynomial algorithm by Moon et. al. [71], my ILP reduction, and a reduction to CNF-SAT that is not included in this thesis. The polynomial method is faster, but the problem is NP-Complete thus that solution must have sacrificed something to obtain the polynomial time speed (unless P = NP). I show instances in which the polynomial time algorithm does not produce the minimum total information leakage, but the ILP and CNF-SAT reductions are able to. In addition to this, I show that Total Information Leakage also has a security vulnerability for non-zero information leakage using the model. I propose an alternative method to Total Information Leakage, called Max Client-to-Client Information Leakage, which removes the vulnerability at the cost of increased total information leakage. In Chapter 8, I create a reduction from the Key Recovery Attack on Logic Locked Circuits to Integer Linear Programming (ILP). This is a recreation of the ``SAT Attack'' using ILP. I provide an empirical analysis of the ILP attack and compare it to the SAT-Attack. I show that ``ILP Attack'' is a viable attack, thus future claims of ``SAT-Attack Resistant Logic Locking Techniques'' need to also show resistance to all potential NP-Complete attacks

    Policy contexts and student identity/ies: a post ’92 university case study

    Get PDF
    Jacqueline Anne Boddington- Success in a knowledge economy? Drivers of student identity in a post-92 university environment: a case study. This work concerned itself with the becoming and being of studenthood against a policy environment that appears to position the student as both watchman and inmate within the panopticon of the higher education system, prompted by a suspicion that the need to occupy both these roles problematise a sense of belonging and the benefits this offers for student success within the academy. The work positions its enquiry through phenomenological frames, and allows that the essence of modern studenthood in the context of one post-’92 university may thereby be extracted from common themes emerging from seemingly disparate existences. Drawing on nomadic constructs of identity that acknowledge the student’s academic citizenship as bounded in both space and time, the work explores the oscillatory themes emerging between policy texts, in-group identity performance and individual reflection. In this way it identifies the moments of pain and seeing that impact the lines of flight to the students’ desired selfs and begins to surface how these are represented in the being and becoming of student in both group and individual settings. This work identifies that the essence of studenthood as demonstrated by the individual within the academy is a commitment to an openness to change and flux that allows self-development. However, it adds a nuance to this and so extends our existing knowledge in suggesting that this individual ambition for change is disguised in-group by a social identity of studenthood firmly situated in consumer mode, thus allowing groups of students to belong to cohorts through the co-option of identities that place them in opposition to their places of study. In this it would seem that the policy rhetorics of employability and value for money offer readily assumed consumer and professional identity labels that provide useful handholds for cohorts to latch on to while navigating complex transformational landscapes

    The social organisation of selected villages in the Marvdasht Plain, Fars Province, southern Iran.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:D36796/81 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore